Considering different finite sets of maps generating a pseudogroup G of locally Lipschitz homeomorphisms between open subsets of a compact metric space X we arrive at a notion of a Hausdorff dimension of G. Since , the dimension loss can be considered as a “topological price” one has to pay to generate G. We collect some properties of and (for example, both of them are invariant under Lipschitz isomorphisms of pseudogroups) and we either estimate or calculate for pseudogroups arising from classical dynamical systems, group actions, foliations, etc.
@article{bwmeta1.element.bwnjournal-article-fmv149i3p211bwm, author = {Pawe\l\ Walczak}, title = {Losing Hausdorff dimension while generating pseudogroups}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {211-237}, zbl = {0861.54033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv149i3p211bwm} }
Walczak, Paweł. Losing Hausdorff dimension while generating pseudogroups. Fundamenta Mathematicae, Tome 149 (1996) pp. 211-237. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv149i3p211bwm/
[00000] [Ba] M. F. Barnsley, Fractals Everywhere, Academic Press, Boston, 1993.
[00001] [Be] A. F. Beardon, Iteration of Rational Functions, Grad. Texts in Math., Springer, New York, 1991.
[00002] [Bi] A. Biś, Entropy of topological directions, preprint. | Zbl 0909.54014
[00003] [Bo] R. Bowen, Hausdorff dimension of quasi-circles, Publ. Math. IHES 50 (1979), 11-26. | Zbl 0439.30032
[00004] [CL] C. Camacho and A. Lins Neto, Geometric Theory of Foliations, Birkhäuser, Boston, 1985. | Zbl 0568.57002
[00005] [Ca] A. Candel, Uniformization of surface laminations, Ann. Sci. École Norm. Sup. 26 (1993), 489-516. | Zbl 0785.57009
[00006] [C1] J. W. Cannon, The combinatorial structure of cocompact discrete hyperbolic groups, Geom. Dedicata 16 (1984), 123-148. | Zbl 0606.57003
[00007] [C2] J. W. Cannon, The theory of negatively curved spaces and groups, in: Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, T. Bedford, M. Keane and C. Series (eds.), Oxford Univ. Press, Oxford, 1991, 315-369.
[00008] [CC] J. Cantwell and L. Conlon, Foliations and subshifts, Tôhoku Math. J. 40 (1988), 165-187.
[00009] [Ch] C. Champetier, Petite simplification dans les groupes hyperboliques, Ann. Fac. Sci. Toulouse 3 (1994), 161-221.
[00010] [CDP] M. Coornaert, T. Delzant et A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Math. 1441, Springer, Berlin, 1991.
[00011] [Ed] G. A. Edgar, Measure, Topology and Fractal Geometry, Undergrad. Texts in Math., Springer, New York, 1990.
[00012] [Eg1] S. Egashira, Expansion growth of foliations, Ann. Fac. Sci. Toulouse 2 (1993), 15-52. | Zbl 0789.58063
[00013] [Eg2] S. Egashira, Expansion growth of horospherical foliations, J. Fac. Sci. Univ. Tokyo 40 (1994), 663-682. | Zbl 0813.57024
[00014] [Fa] K. Falconer, Fractal Geometry, Wiley, Chichester, 1990.
[00015] [FM] K. Falconer and D. Marsh, Classification of quasi-circles by Hausdorff dimension, Nonlinearity 2 (1989), 489-493. | Zbl 0684.58023
[00016] [Fr] H. Frings, Generalized entropy for foliations, Thesis, Düsseldorf, 1991. | Zbl 0748.57012
[00017] [Ga] F. R. Gantmacher, The Theory of Matrices, Vol. 2, Chelsea, New York, 1959.
[00018] [Gar] L. Garnett, Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal. 51 (1983), 285-311. | Zbl 0524.58026
[00019] [Gh] E. Ghys, Rigidité différentiable des groupes fuchsiens, Publ. Math. IHES, to appear.
[00020] [GH1] E. Ghys et P. de la Harpe (eds.), Sur les Groupes Hyperboliques d'après Mikhael Gromov, Birkhäuser, Boston, 1990. | Zbl 0731.20025
[00021] [GH2] E. Ghys et P. de la Harpe (eds.), Infinite groups as geometric objects (after Gromov), in: Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, T. Bedford, M. Keane and C. Series (eds.), Oxford Univ. Press, Oxford, 1991, 299-314.
[00022] [GHV] E. Ghys, P. de la Harpe and A. Verjovsky (eds.), Group Theory from Geometrical Viewpoint, World. Sci., Singapore, 1991.
[00023] [GLW] E. Ghys, R. Langevin and P. Walczak, Entropie géométrique des feuilletages, Acta Math. 160 (1988), 105-142.
[00024] [Go] C. Godbillon, Feuilletages, Birkhäuser, Basel, 1991.
[00025] [Gr] M. Gromov, Hyperbolic groups, in: Essays in Group Theory, S. M. Gersten (ed.), MSRI Publ. 8, Springer, Berlin, 1987, 75-263.
[00026] [GLP] M. Gromov, J. Lafontaine et P. Pansu, Structures métriques sur les variétés riemanniennes, Cedic/Fernand Nathan, Paris, 1981.
[00027] [Ha] A. Haefliger, Some remarks on foliations with minimal leaves, J. Differential Geom. 15 (1980), 269-284. | Zbl 0444.57016
[00028] [HH] G. Hector and U. Hirsch, Introduction to the Geometry of Foliations, Parts A and B, Vieweg, Braunschweig, 1981 and 1983.
[00029] [Hi] M. Hirsch, A stable analytic foliation with only exceptional minimal sets, in: Dynamical Systems, Warwick 1974, Lecture Notes in Math. 468, Springer, Berlin, 1975, 9-10.
[00030] [Hu1] S. Hurder, Ergodic theory of foliations and a theorem of Sacksteder, in: Dynamical Systems, Proc. Special Year at Univ. of Maryland, 1986/87, Lecture Notes in Math. 1342, Springer, Berlin, 1988, 291-328.
[00031] [Hu2] S. Hurder, Exceptional minimal sets of -group actions on the circle, Ergodic Theory Dynam. Systems 11 (1991), 455-467.
[00032] [Hu3] S. Hurder, Rigidity for Anosov actions of higher rank lattices, Ann. of Math. 135 (1992), 361-410. | Zbl 0754.58029
[00033] [Hu4] S. Hurder, A survey on rigidity theory of Anosov actions, in: Differential Topology, Foliations and Group Actions, Rio de Janeiro 1992, P. Schweitzer et al. (eds.), Contemp. Math. 161, Amer. Math. Soc., Providence, 1994, 143-173.
[00034] [HK] S. Hurder and A. Katok, Ergodic theory and Weil measures for foliations, Ann. of Math. 126 (1987), 221-275. | Zbl 0645.57021
[00035] [In] T. Inaba, Examples of exceptional minimal sets, in: A Fête of Topology, Academic Press, Boston 1988, 95-100.
[00036] [IW] T. Inaba and P. Walczak, Transverse Hausdorff dimension of codim-1 -foliations, this issue, 239-244. | Zbl 0860.57021
[00037] [Ke] M. Kellum, Uniformly quasi-isometric foliations, Ergodic Theory Dynam. Systems 13 (1993), 101-122. | Zbl 0784.58060
[00038] [Kl] W. Klingenberg, Riemannian Geometry, de Gruyter, Berlin, 1982.
[00039] [LW1] R. Langevin and P. Walczak, Entropie d'une dynamique, C. R. Acad. Sci. Paris 312 (1991), 141-144. | Zbl 0723.54020
[00040] [LW2] R. Langevin and P. Walczak, Entropy, transverse entropy and partitions of unity, Ergodic Theory Dynam. Systems 14 (1994), 551-563. | Zbl 0856.54025
[00041] [LW3] R. Langevin and P. Walczak, Some invariants measuring dynamics of codimension-one foliations, in: Geometric Study of Foliations, T. Mizutani et al. (eds.), World Sci., Singapore, 1994, 345-358.
[00042] [Le] G. Levitt, On the cost of generating an equivalence relation, Ergodic Theory Dynam. Systems 15 (1995), 1173-1181. | Zbl 0843.28010
[00043] [Ma] J. Marion, Mesure de Hausdorff d'un fractal à similitude interne, Ann. Sci. Math. Québec 10 (1986), 51-84. | Zbl 0613.28007
[00044] [Pa] W. Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc. 112 (1964), 55-65. | Zbl 0127.35301
[00045] [Pl] J. Plante, Foliations with measure preserving holonomy, Ann. of Math. 102 (1975), 327-361. | Zbl 0314.57018
[00046] [Ru] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.
[00047] [Sm] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-815.
[00048] [Su] D. Sullivan, Bounds, quadratic differentials, and renormalization conjectures, in: Mathematics into the 21st Century, Vol. 2, Amer. Math. Soc. Cent. Publ., Providence, 1991, 417-466.
[00049] [Ta] I. Tamura, Topology of Foliations: An Introduction, Amer. Math. Soc., Providence, 1992.
[00050] [TT] S. J. Taylor and C. Tricot, Packing measure and its evaluation for a Brownian path, Trans. Amer. Math. Soc. 288 (1985), 679-699. | Zbl 0537.28003
[00051] [W1] P. Walczak, Dynamics of the geodesic flow of a foliation, Ergodic Theory Dynam. Systems 8 (1988), 637-650. | Zbl 0663.53028
[00052] [W2] P. Walczak, Existence of smooth invariant measures for geodesic flows of foliations of Riemannian manifolds, Proc. Amer. Math. Soc. 120 (1994), 903-906. | Zbl 0804.53045
[00053] [Wa] P. Walters, An Introduction to Ergodic Theory, Springer, New York, 1982.
[00054] [Wi] B. Wirtz, Entropies, Thesis, Dijon, 1993.
[00055] [Zi1] R. Zimmer, Strong rigidity for ergodic actions of semisimple Lie groups, Ann. of Math. 112 (1980), 511-529. | Zbl 0468.22011
[00056] [Zi2] R. Zimmer, Ergodic theory, semisimple Lie groups and foliations by manifolds of negative curvature, Publ. Math. IHES 55 (1982).
[00057] [Zi3] R. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, Boston, 1984.