We discuss main properties of the dynamics on minimal attraction centers (σ-limit sets) of single trajectories for continuous maps of a compact metric space into itself. We prove that each nowhere dense nonvoid closed set in , n ≥ 1, is a σ-limit set for some continuous map.
@article{bwmeta1.element.bwnjournal-article-fmv149i2p183bwm, author = {Andrei Sivak}, title = {Each nowhere dense nonvoid closed set in Rn is a $\sigma$-limit set}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {183-190}, zbl = {0852.54036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv149i2p183bwm} }
Sivak, Andrei. Each nowhere dense nonvoid closed set in Rn is a σ-limit set. Fundamenta Mathematicae, Tome 149 (1996) pp. 183-190. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv149i2p183bwm/
[00000] [1] S. Agronsky, A. Bruckner, J. Ceder and T. Pearson, The structure of ω-limit sets for continuous functions, Real Anal. Exchange 15 (1989-90), 483-510. | Zbl 0728.26006
[00001] [2] A. Bruckner and J. Smítal, The structure of ω-limit sets for continuous maps of the interval, Math. Bohem. 117 (1992), 42-47. | Zbl 0762.26003
[00002] [3] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, N.J., 1981. | Zbl 0459.28023
[00003] [4] H. Hilmy, Sur les centres d'attraction minimaux dans les systèmes dynamiques, Compositio Math. 3 (1936), 227-238. | Zbl 62.0992.11
[00004] [5] N. Kryloff et N. Bogoliouboff [N. Krylov et N. Bogolyubov], La théorie générale de la mesure dans son application à l'étude des systèmes de la mécanique non linéaire, Ann. of Math. (2) 38 (1937), 65-113. | Zbl 0016.08604
[00005] [6] V. V. Nemytskiĭ and V. V. Stepanov, Qualitative Theory of Differential Equations, Princeton Univ. Press, Princeton, N.J., 1960. | Zbl 0089.29502
[00006] [7] A. N. Sharkovskiĭ, Attracting and attracted sets, Dokl. Akad. Nauk SSSR 160 (1965), 1036-1038 (in Russian); English transl.: Soviet Math. Dokl. 6 (1965), 268-270.
[00007] [8] A. G. Sivak, The structure of minimal attraction centers of trajectories of continuous maps of the interval, Real Anal. Exchange 20 (1994/95), 125-133. | Zbl 0824.54021