The Arkhangel’skiĭ–Tall problem: a consistent counterexample
Gruenhage, Gary ; Koszmider, Piotr
Fundamenta Mathematicae, Tome 149 (1996), p. 143-166 / Harvested from The Polish Digital Mathematics Library

We construct a consistent example of a normal locally compact metacompact space which is not paracompact, answering a question of A. V. Arkhangel’skiĭ and F. Tall. An interplay between a tower in P(ω)/Fin, an almost disjoint family in [ω]ω, and a version of an (ω,1)-morass forms the core of the proof. A part of the poset which forces the counterexample can be considered a modification of a poset due to Judah and Shelah for obtaining a Q-set by a countable support iteration.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:212113
@article{bwmeta1.element.bwnjournal-article-fmv149i2p143bwm,
     author = {Gary Gruenhage and Piotr Koszmider},
     title = {The Arkhangel'ski\u\i --Tall problem: a consistent counterexample},
     journal = {Fundamenta Mathematicae},
     volume = {149},
     year = {1996},
     pages = {143-166},
     zbl = {0862.54020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv149i2p143bwm}
}
Gruenhage, Gary; Koszmider, Piotr. The Arkhangel’skiĭ–Tall problem: a consistent counterexample. Fundamenta Mathematicae, Tome 149 (1996) pp. 143-166. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv149i2p143bwm/

[00000] [A] A. V. Arkhangel'skiĭ, The property of paracompactness in the class of perfectly normal locally bicompact spaces, Soviet Math. Dokl. 12 (1971), 1253-1257.

[00001] [AP] A. V. Arkhangel'skiĭ and V. I. Ponomarev, General Topology in Problems and Exercises, Nauka, Moscow, 1974 (in Russian).

[00002] [B] Z. Balogh, On collectionwise normality of locally compact spaces, Trans. Amer. Math. Soc. 323 (1991), 389-411. | Zbl 0736.54017

[00003] [BL] J. Baumgartner and R. Laver, Iterated perfect set forcing, Ann. Math. Logic 17 (1979), 271-288. | Zbl 0427.03043

[00004] [Bi] R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175-186. | Zbl 0042.41301

[00005] [D] P. Daniels, Normal locally compact boundedly metacompact spaces are paracompact: an application of Pixley-Roy spaces, ibid. 35 (1983), 807-823. | Zbl 0526.54009

[00006] [vD] E. K. van Douwen, The integers and topology, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam, 1984, 111-167.

[00007] [GK] G. Gruenhage and P. Koszmider, The Arkhangel'skiĭ-Tall problem under Martin's axiom, Fund. Math., to appear. | Zbl 0855.54006

[00008] [J] T. Jech, Multiple Forcing, Cambridge University Press, New York, 1986. | Zbl 0601.03019

[00009] [JS] H. Judah and S. Shelah, Q-sets, Sierpinski sets, and rapid filters, Proc. Amer. Math. Soc. 111 (1991), 821-832. | Zbl 0751.03023

[00010] [Mi] E. A. Michael, Point-finite and locally finite coverings, Canad. J. Math. 7 (1955), 275-279.

[00011] [T] F. D. Tall, On the existence of normal metacompact Moore spaces which are not metrizable, Canad. J. Math. 26 (1974), 1-6.

[00012] [To] S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261-294. | Zbl 0658.03028

[00013] [V] D. Velleman, Simplified morasses, J. Symbolic Logic 49 (1984), 257-271. | Zbl 0575.03035

[00014] [W1] S. Watson, Locally compact normal spaces in the constructible universe, Canad. J. Math. 34 (1982), 1091-1095.

[00015] [W2] S. Watson, Locally compact normal metalindelöf spaces may not be paracompact: an application of uniformization and Suslin lines, Proc. Amer. Math. Soc. 98 (1986), 676-680. | Zbl 0604.54021

[00016] [W3] S. Watson, Problems I wish I could solve, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam, 1990, 37-76.