We show that the assertions of some fundamental selection theorems for lower-semicontinuous maps with completely metrizable range and metrizable domain actually characterize topological completeness of the target space. We also show that certain natural restrictions on the class of the domains change this situation. The results provide in particular answers to questions asked by Engelking, Heath and Michael [3] and Gutev, Nedev, Pelant and Valov [5].
@article{bwmeta1.element.bwnjournal-article-fmv149i2p127bwm, author = {Jan van Mill and Jan Pelant and Roman Pol}, title = {Selections that characterize topological completeness}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {127-141}, zbl = {0861.54016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv149i2p127bwm} }
van Mill, Jan; Pelant, Jan; Pol, Roman. Selections that characterize topological completeness. Fundamenta Mathematicae, Tome 149 (1996) pp. 127-141. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv149i2p127bwm/
[00000] [1] M. M. Čoban and E. A. Michael, Representing spaces as images of zero-dimensional spaces, Topology Appl. 49 (1993), 217-220.
[00001] [2] R. Engelking, General Topology, Heldermann, Berlin, 1989.
[00002] [3] R. Engelking, R. W. Heath, and E. Michael, Topological well-ordering and continuous selections, Invent. Math. 6 (1968), 150-158. | Zbl 0167.20504
[00003] [4] W. G. Fleissner, Applications of stationary sets to topology, in: Surveys in Topology, G. M. Reed (ed.), Academic Press, New York, 1980, 163-193.
[00004] [5] V. Gutev, S. Nedev, J. Pelant, and V. Valov, Cantor set selectors, Topology Appl. 44 (1992), 163-168. | Zbl 0769.54020
[00005] [6] R. W. Hansell, Descriptive topology, in: Recent Progress in General Topology, M. Hušek and J. van Mill (eds.), North-Holland, Amsterdam, 1992, 275-315.
[00006] [7] F. Hausdorff, Über innere Abbildungen, Fund. Math. 23 (1934), 279-291. | Zbl 60.0510.02
[00007] [8] V. G. Kanoveĭ and A. V. Ostrovskiĭ, On non-Borel -sets, Soviet Math. Dokl. 24 (1981), 386-389.
[00008] [9] K. Kunen, Set Theory. An Introduction to Independence Proofs, Stud. Logic Found. Math. 102, North-Holland, Amsterdam, 1980.
[00009] [10] K. Kuratowski, Topology I, Academic Press, New York, 1968.
[00010] [11] D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), 143-178. | Zbl 0222.02075
[00011] [12] E. A. Michael, Selected selection theorems, Amer. Math. Monthly 63 (1956), 233-238. | Zbl 0070.39502
[00012] [13] E. A. Michael, A theorem on semi-continuous set-valued functions, Duke Math. J. 26 (1959), 656-674.
[00013] [14] J. van Mill and E. Wattel, Selections and orderability, Proc. Amer. Math. Soc. 83 (1981), 601-605. | Zbl 0473.54010
[00014] [15] A. H. Stone, On σ-discreteness and Borel isomorphism, Amer. J. Math. 85 (1963), 655-666. | Zbl 0117.40103