A homeomorphism f:X → X of a compactum X with metric d is expansive if there is c > 0 such that if x, y ∈ X and x ≠ y, then there is an integer n ∈ ℤ such that . In this paper, we prove that if a homeomorphism f:X → X of a continuum X can be lifted to an onto map h:P → P of the pseudo-arc P, then f is not expansive. As a corollary, we prove that there are no expansive homeomorphisms on chainable continua. This is an affirmative answer to one of Williams’ conjectures.
@article{bwmeta1.element.bwnjournal-article-fmv149i2p119bwm, author = {Hisao Kato}, title = {The nonexistence of expansive homeomorphisms of chainable continua}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {119-126}, zbl = {0868.54032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv149i2p119bwm} }
Kato, Hisao. The nonexistence of expansive homeomorphisms of chainable continua. Fundamenta Mathematicae, Tome 149 (1996) pp. 119-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv149i2p119bwm/
[00000] [1] R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J. 15 (1948), 729-742. | Zbl 0035.39103
[00001] [2] R. H. Bing, Concerning hereditarily indecomposable continua, Pacific J. Math. 1 (1951), 43-51. | Zbl 0043.16803
[00002] [3] L. Fearnley, Characterizations of the continuous images of the pseudo-arc, Trans. Amer. Math. Soc. 111 (1964), 380-399. | Zbl 0132.18603
[00003] [4] O. H. Hamilton, A fixed point theorem for the pseudo-arc and certain other metric continua, Proc. Amer. Math. Soc. 2 (1951), 173-174. | Zbl 0054.07003
[00004] [5] H. Kato, Expansive homeomorphisms and indecomposability, Fund. Math. 139 (1991), 49-57. | Zbl 0823.54028
[00005] [6] H. Kato, Expansive homeomorphisms in continuum theory, Topology Appl. 45 (1992), 223-243. | Zbl 0790.54048
[00006] [7] H. Kato, Continuum-wise expansive homeomorphisms, Canad. J. Math. 45 (1993), 576-598. | Zbl 0797.54047
[00007] [8] H. Kato, Chaotic continua of (continuum-wise) expansive homeomorphisms and chaos in the sense of Li and Yorke, Fund. Math. 145 (1994), 261-279. | Zbl 0809.54033
[00008] [9] H. Kato, Knaster-like chainable continua admit no expansive homeomorphisms, unpublished.
[00009] [10] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36. | Zbl 0061.40107
[00010] [11] J. Kennedy, The construction of chaotic homeomorphisms on chainable continua, Topology Appl. 43 (1992), 91-116. | Zbl 0756.54019
[00011] [12] A. Lelek, On weakly chainable continua, Fund. Math. 51 (1962), 271-282. | Zbl 0111.35203
[00012] [13] W. Lewis, Most maps of the pseudo-arc are homeomorphisms, Proc. Amer. Math. Soc. 91 (1984), 147-154. | Zbl 0553.54018
[00013] [14] S. B. Nadler, Jr., Hyperspaces of Sets, Pure and Appl. Math. 49, Dekker, New York, 1978.
[00014] [15] W. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc. 1 (1950), 769-774. | Zbl 0040.09903