The box-counting dimension for geometrically finite Kleinian groups
Stratmann, B. ; Urbański, Mariusz
Fundamenta Mathematicae, Tome 149 (1996), p. 83-93 / Harvested from The Polish Digital Mathematics Library

We calculate the box-counting dimension of the limit set of a general geometrically finite Kleinian group. Using the 'global measure formula' for the Patterson measure and using an estimate on the horoball counting function we show that the Hausdorff dimension of the limit set is equal to both: the box-counting dimension and packing dimension of the limit set. Thus, by a result of Sullivan, we conclude that for a geometrically finite group these three different types of dimension coincide with the exponent of convergence of the group.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:212110
@article{bwmeta1.element.bwnjournal-article-fmv149i1p83bwm,
     author = {B. Stratmann and Mariusz Urba\'nski},
     title = {The box-counting dimension for geometrically finite Kleinian groups},
     journal = {Fundamenta Mathematicae},
     volume = {149},
     year = {1996},
     pages = {83-93},
     zbl = {0847.20046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv149i1p83bwm}
}
Stratmann, B.; Urbański, Mariusz. The box-counting dimension for geometrically finite Kleinian groups. Fundamenta Mathematicae, Tome 149 (1996) pp. 83-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv149i1p83bwm/

[00000] [1] J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495-549. | Zbl 0789.28010

[00001] [2] A. F. Beardon and B. Maskit, Limit points of Kleinian groups and finite sided fundamental polyhedra, Acta Math. 132 (1974), 1-12. | Zbl 0277.30017

[00002] [3] C. J. Bishop and P. W. Jones, Hausdorff dimension and Kleinian groups, preprint, Stony Brook, 1994/95.

[00003] [4] B. H. Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1988), 245-317. | Zbl 0789.57007

[00004] [5] R. Bowen and C. Series, Markov maps associated with Fuchsian groups, Inst. Hautes Etudes Sci. Publ. Math. 50 (1979), 153-170. | Zbl 0439.30033

[00005] [6] E. B. Davies and N. Mandouvalos, The hyperbolic geometry and spectrum of irregular domains, Nonlinearity 3 (1990), 913-947. | Zbl 0709.58038

[00006] [7] M. Denker and M. Urbański, Geometric measures for parabolic rational maps, Ergodic Theory Dynam. Systems 12 (1992), 53-66. | Zbl 0737.58030

[00007] [8] M. Denker and M. Urbański, The capacity of parabolic Julia sets, Math. Z. 211 (1992), 73-86. | Zbl 0763.30009

[00008] [9] K. Falconer, Fractal Geometry, Wiley, New York, 1990.

[00009] [10] M. L. Lapidus, Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture, Trans. Amer. Math. Soc. 325 (1991), 465-529. | Zbl 0741.35048

[00010] [11] S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), 241-273. | Zbl 0336.30005

[00011] [12] B. Stratmann, A note on counting cuspidal excursions, Ann. Acad. Sci. Fenn. 20 (1995).

[00012] [13] B. Stratmann, The Hausdorff dimension of bounded geodesics on geometrically finite manifolds, accepted by Ergod. Theory Dynam. Systems; preprint in Mathematica Gottingensis 39 (1993).

[00013] [14] B. Stratmann and S. Velani, The Patterson measure for geometrically finite groups with parabolic elements, new and old, Proc. London Math. Soc. (3) 71 (1995), 197-220. | Zbl 0821.58026

[00014] [15] D. Sullivan, The density at infinity of a discrete group, Inst. Hautes Etudes Sci. Publ. Math. 50 (1979), 171-202. | Zbl 0439.30034

[00015] [16] D. Sullivan, Entropy, Hausdorff measures old and new, and the limit set of geometrically finite Kleinian groups, Acta Math. 153 (1984), 259-277. | Zbl 0566.58022

[00016] [17] P. Tukia, On isomorphisms of geometrically finite Möbius groups, Inst. Hautes Etudes Sci. Publ. Math. 61 (1985), 171-214. | Zbl 0572.30036