An artin algebra A over a commutative artin ring R is called quasitilted if gl.dim A ≤ 2 and for each indecomposable finitely generated A-module M we have pd M ≤ 1 or id M ≤ 1. In [11] several characterizations of quasitilted algebras were proven. We investigate the structure and homological properties of connected components in the Auslander-Reiten quiver of a quasitilted algebra A.
@article{bwmeta1.element.bwnjournal-article-fmv149i1p67bwm, author = {Fl\'avio Coelho and Andrzej Skowro\'nski}, title = {On Auslander--Reiten components for quasitilted algebras}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {67-82}, zbl = {0848.16012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv149i1p67bwm} }
Coelho, Flávio; Skowroński, Andrzej. On Auslander–Reiten components for quasitilted algebras. Fundamenta Mathematicae, Tome 149 (1996) pp. 67-82. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv149i1p67bwm/
[00000] [1] I. Assem and F. U. Coelho, Glueings of tilted algebras, J. Pure Appl. Algebra 96 (1994), 225-243. | Zbl 0821.16015
[00001] [2] M. Auslander and I. Reiten, Representation theory of artin algebras V, Comm. Algebra 5 (1977), 519-554.
[00002] [3] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995. | Zbl 0834.16001
[00003] [4] R. Bautista and S. Smalø, Non-existent cycles, Comm. Algebra 11 (1983), 1755-1767. | Zbl 0515.16013
[00004] [5] F. U. Coelho, Components of Auslander-Reiten quivers containing only preprojective modules, J. Algebra 157 (1993), 472-488. | Zbl 0793.16008
[00005] [6] F. U. Coelho, A note on preinjective partial tilting modules, in: Representations of Algebras, CMS Conf. Proc. 14, Amer. Math. Soc., 1994, 109-115.
[00006] [7] F. U. Coelho, E. N. Marcos, H. A. Merklen and A. Skowroński, Domestic semiregular branch enlargements of tame concealed algebras, in: Representations of Algebras, ICRA VII, Cocoyoc (Mexico) 1994, CMS Conf. Proc., in press. | Zbl 0860.16013
[00007] [8] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 173 (1976).
[00008] [9] D. Happel, U. Preiser and C. M. Ringel, Vinberg's characterisation of Dynkin diagrams using subadditive functions with applications to DTr-periodic modules, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1980, 280-294. | Zbl 0446.16032
[00009] [10] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443. | Zbl 0503.16024
[00010] [11] D. Happel, I. Reiten and S. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc., in press. | Zbl 0849.16011
[00011] [12] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47. | Zbl 0675.16013
[00012] [13] O. Kerner, Stable components of wild tilted algebra, J. Algebra 142 (1991), 37-57. | Zbl 0737.16007
[00013] [14] H. Lenzing and J. A. de la Pe na, Wild canonical algebras, Math. Z., in press.
[00014] [15] H. Lenzing and J. A. de la Pe na, Algebras with a separating tubular family, preprint, 1995.
[00015] [16] S. Liu, Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc. 47 (1993), 405-416. | Zbl 0818.16015
[00016] [17] S. Liu, The connected components of the Auslander-Reiten quiver of a tilted algebra, J. Algebra 161 (1993), 505-523. | Zbl 0818.16014
[00017] [18] C. M. Ringel, Finite dimensional hereditary algebras of wild representation type, Math. Z. 161 (1978), 235-255. | Zbl 0415.16023
[00018] [19] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
[00019] [20] C. M. Ringel, The regular components of the Auslander-Reiten quiver of a tilted algebra, Chinese Ann. Math. 9B (1988), 1-18. | Zbl 0667.16024
[00020] [21] C. M. Ringel, The canonical algebras, in: Topics in Algebra, Banach Center Publ. 26, Part I, PWN, Warszawa, 1990, 407-432.
[00021] [22] A. Skowroński, Regular Auslander-Reiten components containing directing modules, Proc. Amer. Math. Soc. 120 (1994), 19-26. | Zbl 0831.16014
[00022] [23] A. Skowroński, Minimal representation-infinite artin algebras, Math. Proc. Cambridge Philos. Soc. 116 (1994), 229-243. | Zbl 0822.16010
[00023] [24] A. Skowroński, Cycle-finite algebras, J. Pure Appl. Algebra 103 (1995), 105-116. | Zbl 0841.16020
[00024] [25] A. Skowroński, On omnipresent tubular families of modules, in: Representations of Algebras, ICRA, Cocoyoc (Mexico) 1994, CMS Conf. Proc., in press. | Zbl 0865.16013
[00025] [26] A. Skowroński, Module categories with finite short cycles, in preparation. | Zbl 0819.16013
[00026] [27] H. Strauss, On the perpendicular category of a partial tilting module, J. Algebra 144 (1991), 43-66. | Zbl 0746.16009
[00027] [28] Y. Zhang, The structure of stable components, Canad. J. Math. 43 (1991), 652-672. | Zbl 0736.16007