Algebraic properties of rings of continuous functions
Mulero, M.
Fundamenta Mathematicae, Tome 149 (1996), p. 55-66 / Harvested from The Polish Digital Mathematics Library

This paper is devoted to the study of algebraic properties of rings of continuous functions. Our aim is to show that these rings, even if they are highly non-noetherian, have properties quite similar to the elementary properties of noetherian rings: we give going-up and going-down theorems, a characterization of z-ideals and of primary ideals having as radical a maximal ideal and a flatness criterion which is entirely analogous to the one for modules over principal ideal domains.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:212108
@article{bwmeta1.element.bwnjournal-article-fmv149i1p55bwm,
     author = {M. Mulero},
     title = {Algebraic properties of rings of continuous functions},
     journal = {Fundamenta Mathematicae},
     volume = {149},
     year = {1996},
     pages = {55-66},
     zbl = {0840.54020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv149i1p55bwm}
}
Mulero, M. Algebraic properties of rings of continuous functions. Fundamenta Mathematicae, Tome 149 (1996) pp. 55-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv149i1p55bwm/

[00000] [1] M. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.

[00001] [2] R. Bkouche, Couples spectraux et faisceaux associés. Applications aux anneaux de fonctions, Bull. Soc. Math. France 98 (1970), 253-295. | Zbl 0201.37204

[00002] [3] N. Bourbaki, Algèbre commutative, Ch. 1 and 2, Hermann, 1961.

[00003] [4] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer, 1976.

[00004] [5] T. Isiwata, Mappings and spaces, Pacific J. Math. 20 (1967), 455-480. | Zbl 0149.40501

[00005] [6] C. W. Khols, Prime ideals in rings of continuous functions II, Duke Math. J. 2 (1958), 447-458.

[00006] [7] W. S. Massey, Algebraic Topology: An Introduction, Springer, 1967.

[00007] [8] H. Matsumura, Commutative Algebra, 2nd ed., Benjamin, 1980.

[00008] [9] M. A. Mulero Díaz, Revestimientos finitos y álgebras de funciones continuas, Ph.D. Thesis, Univ. de Extremadura, 1992.

[00009] [10] J. Muñoz Díaz, Caracterización de las álgebras diferenciales y síntesis espectral para módulos sobre tales álgebras, Collect. Math. 23 (1972), 17-83.

[00010] [11] C. W. Neville, Flat C(X)-modules and F-spaces, Math. Proc. Cambridge Philos. Soc. 106 (1989), 237-244. | Zbl 0780.54016