This paper is devoted to the study of algebraic properties of rings of continuous functions. Our aim is to show that these rings, even if they are highly non-noetherian, have properties quite similar to the elementary properties of noetherian rings: we give going-up and going-down theorems, a characterization of z-ideals and of primary ideals having as radical a maximal ideal and a flatness criterion which is entirely analogous to the one for modules over principal ideal domains.
@article{bwmeta1.element.bwnjournal-article-fmv149i1p55bwm, author = {M. Mulero}, title = {Algebraic properties of rings of continuous functions}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {55-66}, zbl = {0840.54020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv149i1p55bwm} }
Mulero, M. Algebraic properties of rings of continuous functions. Fundamenta Mathematicae, Tome 149 (1996) pp. 55-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv149i1p55bwm/
[00000] [1] M. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
[00001] [2] R. Bkouche, Couples spectraux et faisceaux associés. Applications aux anneaux de fonctions, Bull. Soc. Math. France 98 (1970), 253-295. | Zbl 0201.37204
[00002] [3] N. Bourbaki, Algèbre commutative, Ch. 1 and 2, Hermann, 1961.
[00003] [4] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer, 1976.
[00004] [5] T. Isiwata, Mappings and spaces, Pacific J. Math. 20 (1967), 455-480. | Zbl 0149.40501
[00005] [6] C. W. Khols, Prime ideals in rings of continuous functions II, Duke Math. J. 2 (1958), 447-458.
[00006] [7] W. S. Massey, Algebraic Topology: An Introduction, Springer, 1967.
[00007] [8] H. Matsumura, Commutative Algebra, 2nd ed., Benjamin, 1980.
[00008] [9] M. A. Mulero Díaz, Revestimientos finitos y álgebras de funciones continuas, Ph.D. Thesis, Univ. de Extremadura, 1992.
[00009] [10] J. Muñoz Díaz, Caracterización de las álgebras diferenciales y síntesis espectral para módulos sobre tales álgebras, Collect. Math. 23 (1972), 17-83.
[00010] [11] C. W. Neville, Flat C(X)-modules and F-spaces, Math. Proc. Cambridge Philos. Soc. 106 (1989), 237-244. | Zbl 0780.54016