We define a relative coincidence Nielsen number for pairs of maps between manifolds, prove a Wecken type theorem for this invariant and give some formulae expressing by the ordinary Nielsen numbers.
@article{bwmeta1.element.bwnjournal-article-fmv149i1p1bwm, author = {Jerzy Jezierski}, title = {The relative coincidence Nielsen number}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {1-18}, zbl = {0846.55003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv149i1p1bwm} }
Jezierski, Jerzy. The relative coincidence Nielsen number. Fundamenta Mathematicae, Tome 149 (1996) pp. 1-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv149i1p1bwm/
[00000] [B] R. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., New York, 1971. | Zbl 0216.19601
[00001] [BS] R. Brown and H. Schirmer, Nielsen coincidence theory and coincidence-producing maps for manifolds with boundary, Topology Appl. 46 (1992), 65-79. | Zbl 0757.55002
[00002] [DJ] R. Dobreńko and J. Jezierski, The coincidence Nielsen theory on non-orientable manifolds, Rocky Mountain J. Math. 23 (1993), 67-85. | Zbl 0787.55003
[00003] [Je1] J. Jezierski, The Nielsen number product formula for coincidences, Fund. Math. 134 (1989), 183-212. | Zbl 0715.55002
[00004] [Je2] J. Jezierski, The semi-index product formula, ibid. 140 (1992), 99-120.
[00005] [Je3] J. Jezierski, The coincidence Nielsen number for maps into real projective spaces, ibid. 140 (1992), 121-136. | Zbl 0811.55002
[00006] [Je4] J. Jezierski, The coincidence Nielsen theory on topological manifolds, ibid. 143 (1993), 167-178.
[00007] [Je5] J. Jezierski, The Lefschetz coincidence number on non-orientable manifolds, submitted.
[00008] [Ji] B. J. Jiang, Lectures on the Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, 1983.
[00009] [S1] H. Schirmer, Mindestzahlen von Koinzidenzpunkten, J. Reine Angew. Math. 194 (1955), 21-39.
[00010] [S2] H. Schirmer, A relative Nielsen number, Pacific J. Math. 122 (1986), 459-473. | Zbl 0553.55001
[00011] [Y] C. Y. You, Fixed points of a fibre map, ibid. 100 (1982), 217-241.