Assuming the continuum hypothesis, we construct a pure subgroup G of the Baer-Specker group with the following properties. Every endomorphism of G differs from a scalar multiplication by an endomorphism of finite rank. Yet G has uncountably many homomorphisms to ℤ.
@article{bwmeta1.element.bwnjournal-article-fmv149i1p19bwm, author = {Andreas Blass and R\"udiger G\"obel}, title = {Subgroups of the Baer--Specker group with few endomorphisms but large dual}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {19-29}, zbl = {0851.20052}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv149i1p19bwm} }
Blass, Andreas; Göbel, Rüdiger. Subgroups of the Baer–Specker group with few endomorphisms but large dual. Fundamenta Mathematicae, Tome 149 (1996) pp. 19-29. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv149i1p19bwm/
[00000] [1] A. Blass, Cardinal characteristics and the product of countably many infinite cyclic groups, J. Algebra 169 (1994), 512-540. | Zbl 0816.20047
[00001] [2] A. Blass, Near coherence of filters, II: Applications to operator ideals, the Stone-Čech remainder of a half-line, order ideals of sequences, and slenderness of groups, Trans. Amer. Math. Soc. 300 (1987), 557-581. | Zbl 0647.03043
[00002] [3] A. Blass and C. Laflamme, Consistency results about filters and the number of inequivalent growth types, J. Symbolic Logic 54 (1989), 50-56. | Zbl 0673.03038
[00003] [4] S. U. Chase, Function topologies on abelian groups, Illinois J. Math. 7 (1963), 593-608. | Zbl 0171.28703
[00004] [5] A. L. S. Corner, A class of pure subgroups of the Baer-Specker group, unpublished talk given at Montpellier Conference on Abelian Groups, 1967.
[00005] [6] A. L. S. Corner and R. Göbel, Prescribing endomorphism algebras, a unified treatment, Proc. London Math. Soc. 50 (1985), 447-479. | Zbl 0562.20030
[00006] [7] A. L. S. Corner and B. Goldsmith, On endomorphisms and automorphisms of some pure subgroups of the Baer-Specker group, in: Abelian Group Theory and Related Topics, R. Göbel, P. Hill and W. Liebert (eds.), Contemp. Math. 171, 1994, 69-78. | Zbl 0822.20056
[00007] [8] M. Dugas und R. Göbel, Die Struktur kartesischer Produkte der ganzen Zahlen modulo kartesische Produkte ganzer Zahlen, Math. Z. 168 (1979), 15-21. | Zbl 0387.03018
[00008] [9] M. Dugas und R. Göbel, Endomorphism rings of separable torsion-free abelian groups, Houston J. Math 11 (1985), 471-483. | Zbl 0597.20046
[00009] [10] M. Dugas and J. Irwin, On basic subgroups of Π Z, Comm. Algebra 19 (1991), 2907-2921. | Zbl 0753.20015
[00010] [11] M. Dugas and J. Irwin, On pure subgroups of cartesian products of integers, Resultate Math. 15 (1989), 35-52. | Zbl 0671.20052
[00011] [12] M. Dugas, J. Irwin and S. Khabbaz, Countable rings as endomorphism rings, Quart. J. Math. Oxford 39 (1988), 201-211. | Zbl 0663.20058
[00012] [13] K. Eda, A note on subgroups of , in: Abelian Group Theory, R. Göbel, L. Lady and A. Mader (eds.), Lecture Notes in Math. 1006, Springer, 1983, 371-374.