We describe, for any compact connected Lie group G and any prime p, the monoid of self maps → which are rational equivalences. Here, denotes the p-adic completion of the classifying space of G. Among other things, we show that two such maps are homotopic if and only if they induce the same homomorphism in rational cohomology, if and only if their restrictions to the classifying space of the maximal torus of G are homotopic.
@article{bwmeta1.element.bwnjournal-article-fmv147i2p99bwm, author = {Stefan Jackowski and James McClure and Bob Oliver}, title = {Self homotopy equivalences of classifying spaces of compact connected Lie groups}, journal = {Fundamenta Mathematicae}, volume = {146}, year = {1995}, pages = {99-126}, zbl = {0835.55012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv147i2p99bwm} }
Jackowski, Stefan; McClure, James; Oliver, Bob. Self homotopy equivalences of classifying spaces of compact connected Lie groups. Fundamenta Mathematicae, Tome 146 (1995) pp. 99-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv147i2p99bwm/
[00000] [Ad] J. F. Adams, Lectures on Lie Groups, Benjamin, 1969.
[00001] [AM] J. F. Adams and Z. Mahmud, Maps between classifying spaces, Invent. Math. 35 (1976), 1-41. | Zbl 0306.55019
[00002] [Br] A. Borel, Topics in the Homology Theory of Fiber Bundles, Lecture Notes in Math. 36, Springer, 1967.
[00003] [Bt] R. Bott, On torsion in Lie groups, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 586-588. | Zbl 0057.02201
[00004] [Bb1] N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4-6, Hermann 1968.
[00005] [Bb2] N. Bourbaki, Groupes et algèbres de Lie, Chapitre 9, Hermann, 1982.
[00006] [Bf] A. Bousfield, Homotopy spectral sequences and obstructions, Israel J. Math. 66 (1989), 54-104. | Zbl 0677.55020
[00007] [BK] A. Bousfield and D. Kan, Homotopy Limits, Completions and Localizations, Lecture Notes in Math. 304, Springer, 1972. | Zbl 0259.55004
[00008] [DW] W. Dwyer and C. Wilkerson, A new finite loop space at the prime two, J. Amer. Math. Soc. 6 (1993), 37-64. | Zbl 0769.55007
[00009] [DW2] W. Dwyer and C. Wilkerson, The center of a p-compact group, in: The Čech Centennial: A Conference on Homotopy Theory, M. Cenkl and H. Miller (eds.), Contemp. Math. 181, Amer. Math. Soc., to appear.
[00010] [DZ] W. Dwyer and A. Zabrodsky, Maps between classifying spaces, in: Algebraic Topology, Barcelona, 1976, Lecture Notes in Math. 1298, Springer, 1987, 106-119.
[00011] [Fe] M. Feshbach, The Segal conjecture for compact Lie groups, Topology 26 (1987), 1-20. | Zbl 0606.57024
[00012] [Fr] E. Friedlander, Exceptional isogenies and the classifying spaces of simple Lie groups, Ann. of Math. 101 (1975), 510-520. | Zbl 0308.55016
[00013] [Hu] J. Hubbuck, Homotopy representations of Lie groups, in: New Developments in Topology, London Math. Soc. Lecture Note Ser. 11, Cambridge Univ. Press, 1974, 33-41.
[00014] [Is] K. Ishiguro, Unstable Adams operations on classifying spaces, Math. Proc. Cambridge Philos. Soc. 102 (1987), 71-75.
[00015] [JMO] S. Jackowski, J. McClure and B. Oliver, Homotopy classification of self-maps of BG via G-actions, Ann. of Math. 135 (1992), 183-270. | Zbl 0771.55003
[00016] [Ml] J. Milnor, Morse Theory, Princeton Univ. Press, 1969.
[00017] [Ms] G. Mislin, The homotopy classification of self-maps of infinite quaternionic projective space, Quart. J. Math. Oxford 38 (1987), 245-257. | Zbl 0625.55013
[00018] [MZ] D. Montgomery and L. Zippin, Topological Transformation Groups, Interscience, 1955.
[00019] [Mø] J. M. Møller, The normalizer of the Weyl group, Math. Ann. 294 (1992), 59-80. | Zbl 0761.55006
[00020] [No1] D. Notbohm, Maps between classifying spaces, Math. Z. 207 (1991), 153-168. | Zbl 0731.55011
[00021] [No2] D. Notbohm, Maps between classifying spaces and applications, J. Pure Appl. Algebra 89 (1993), 273-294. | Zbl 0794.55011
[00022] [Su] D. Sullivan, Geometric Topology, Part I: Localization, Periodicity and Galois Symmetry, Mimeographed notes, M.I.T., 1970.
[00023] [Wi] C. W. Wilkerson, Self-maps of classifying spaces, in: Localization in Group Theory and Homotopy Theory, Lecture Notes in Math. 418, Springer, 1974, 150-157.
[00024] [Wo] Z. Wojtkowiak, On maps from holim F to Z, in: Algebraic Topology, Barcelona, 1986, Lecture Notes in Math. 1298, Springer, 1987, 227-236.