Characterization of knot complements in the n-sphere
Liem, Vo-Thanh ; Venema, Gerard
Fundamenta Mathematicae, Tome 146 (1995), p. 189-196 / Harvested from The Polish Digital Mathematics Library

Knot complements in the n-sphere are characterized. A connected open subset W of Sn is homeomorphic with the complement of a locally flat (n-2)-sphere in Sn, n ≥ 4, if and only if the first homology group of W is infinite cyclic, W has one end, and the homotopy groups of the end of W are isomorphic to those of S1 in dimensions less than n/2. This result generalizes earlier theorems of Daverman, Liem, and Liem and Venema.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:212083
@article{bwmeta1.element.bwnjournal-article-fmv147i2p189bwm,
     author = {Vo-Thanh Liem and Gerard Venema},
     title = {Characterization of knot complements in the n-sphere},
     journal = {Fundamenta Mathematicae},
     volume = {146},
     year = {1995},
     pages = {189-196},
     zbl = {0827.57012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv147i2p189bwm}
}
Liem, Vo-Thanh; Venema, Gerard. Characterization of knot complements in the n-sphere. Fundamenta Mathematicae, Tome 146 (1995) pp. 189-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv147i2p189bwm/

[00000] [1] H. Bass, Projective modules over free groups are free, J. Algebra 1 (1964), 367-373. | Zbl 0145.26604

[00001] [2] W. Browder, J. Levine and G. R. Livesay, Finding a boundary for an open manifold, Amer. J. Math. 87 (1965), 1017-1028. | Zbl 0134.42801

[00002] [3] M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76. | Zbl 0132.20002

[00003] [4] R. J. Daverman, Homotopy classification of locally flat codimension two spheres, Amer. J. Math. 98 (1976), 367-374. | Zbl 0328.57002

[00004] [5] M. H. Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), 357-453. | Zbl 0528.57011

[00005] [6] V. T. Liem, Homotopy characterization of weakly flat knots, Fund. Math. 102 (1979), 61-72. | Zbl 0405.57006

[00006] [7] V. T. Liem and G. A. Venema, Characterization of knot complements in the 4-sphere, Topology Appl. 42 (1991), 231-245. | Zbl 0832.57012

[00007] [8] V. T. Liem and G. A. Venema, On the asphericity of knot complements, Canad. J. Math. 45 (1993), 340-356. | Zbl 0784.57010

[00008] [9] F. Quinn, Ends of maps, III: dimensions 4 and 5, J. Differential Geom. 17 (1982), 503-521. | Zbl 0533.57009

[00009] [10] L. C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, Ph.D. dissertation, Princeton Univ., Princeton, N.J., 1965.

[00010] [11] S. Smale, Generalized Poincaré's conjecture in dimensions >4, Ann. of Math. 74 (1961), 391-466. | Zbl 0099.39202

[00011] [12] P. F. Smith, A note on idempotent ideals in group rings, Arch. Math. (Basel) 27 (1976), 22-27. | Zbl 0318.16003

[00012] [13] G. A. Venema, Duality on noncompact manifolds and complements of topological knots, Proc. Amer. Math. Soc., to appear. | Zbl 0855.57008

[00013] [14] G. A. Venema, Local homotopy properties of topological embeddings in codimension two, in: Proc. 1993 Georgia Internat. Topology Conf., to appear. | Zbl 0889.57012

[00014] [15] C. T. C. Wall, Finiteness conditions for CW-complexes, Ann. of Math. 81 (1965), 56-69. | Zbl 0152.21902

[00015] [16] J. H. C. Whitehead, Combinatorial homotopy, I, Bull. Amer. Math. Soc. 55 (1949), 213-245.