On composants of solenoids
de Man, Ronald
Fundamenta Mathematicae, Tome 146 (1995), p. 181-188 / Harvested from The Polish Digital Mathematics Library

It is proved that any two composants of any two solenoids are homeomorphic.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:212082
@article{bwmeta1.element.bwnjournal-article-fmv147i2p181bwm,
     author = {Ronald de Man},
     title = {On composants of solenoids},
     journal = {Fundamenta Mathematicae},
     volume = {146},
     year = {1995},
     pages = {181-188},
     zbl = {0877.54031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv147i2p181bwm}
}
de Man, Ronald. On composants of solenoids. Fundamenta Mathematicae, Tome 146 (1995) pp. 181-188. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv147i2p181bwm/

[00000] [1] J. M. Aarts, The structure of orbits in dynamical systems, Fund. Math. 129 (1988), 39-58. | Zbl 0664.54026

[00001] [2] J. M. Aarts and R. J. Fokkink, The classification of solenoids, Proc. Amer. Math. Soc. 111 (1991), 1161-1163. | Zbl 0768.54026

[00002] [3] R. H. Bing, A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Canad. J. Math. 12 (1960), 209-230. | Zbl 0091.36204

[00003] [4] C. Bandt, Composants of the horseshoe, Fund. Math. 144 (1994), 231-241. | Zbl 0818.54028

[00004] [5] D. van Dantzig, Ueber topologisch homogene Kontinua, ibid. 15 (1930), 102-125.

[00005] [6] R. J. Fokkink, The structure of trajectories, PhD thesis, Delft, 1991. | Zbl 0768.54028

[00006] [7] R. J. Fokkink, There exist uncountably many orbits in flows, Fund. Math. 136 (1990), 147-156. | Zbl 0737.54021

[00007] [8] A. van Heemert, Topologische Gruppen und unzerlegbare Kontinua, Compositio Math. 5 (1938), 319-326.

[00008] [9] M. C. McCord, Inverse limit sequences with covering maps, Trans. Amer. Math. Soc. 114 (1965), 197-209. | Zbl 0136.43603