Multifractal properties of the sets of zeroes of Brownian paths
Dolgopyat, Dmitry ; Sidorov, Vadim
Fundamenta Mathematicae, Tome 146 (1995), p. 157-171 / Harvested from The Polish Digital Mathematics Library

We study Brownian zeroes in the neighborhood of which one can observe a non-typical growth rate of Brownian excursions. We interpret the multifractal curve for the Brownian zeroes calculated in [6] as the Hausdorff dimension of certain sets. This provides an example of the multifractal analysis of a statistically self-similar random fractal when both the spacing and the size of the corresponding nested sets are random.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:212080
@article{bwmeta1.element.bwnjournal-article-fmv147i2p157bwm,
     author = {Dmitry Dolgopyat and Vadim Sidorov},
     title = {Multifractal properties of the sets of zeroes of Brownian paths},
     journal = {Fundamenta Mathematicae},
     volume = {146},
     year = {1995},
     pages = {157-171},
     zbl = {0837.60077},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv147i2p157bwm}
}
Dolgopyat, Dmitry; Sidorov, Vadim. Multifractal properties of the sets of zeroes of Brownian paths. Fundamenta Mathematicae, Tome 146 (1995) pp. 157-171. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv147i2p157bwm/

[00000] [1] K. Evertz, Laplacian fractals, Ph.D. thesis, Yale University, 1989.

[00001] [2] K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1985. | Zbl 0587.28004

[00002] [3] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2, Wiley, 1970. | Zbl 0039.13201

[00003] [4] I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen, 1971. | Zbl 0219.60027

[00004] [5] K. Ito and H. McKean, Diffusion Processes and their Sample Paths, Springer, Berlin, 1965. | Zbl 0127.09503

[00005] [6] G. M. Molchan, Multi-mono-fractal properties of Brownian zeroes, Proc. Russian Acad. Sci. 335 (1994), 424-427.

[00006] [7] S. J. Taylor, The α-dimensional measure on the graph and set of zeroes of a Brownian path, Proc. Cambridge Philos. Soc. 51 (1953), 31-39.

[00007] [8] S. J. Taylor, The measure theory of random fractals, Math. Proc. Cambridge Philos. Soc. 100 (1986), 383-406. | Zbl 0622.60021

[00008] [9] S. J. Taylor and J. G. Wendel, The exact Hausdorff measure of the zero set of a stable process, Z. Wahrsch. Verw. Gebiete 6 (1966), 170-180. | Zbl 0178.52702