We parametrize Cichoń’s diagram and show how cardinals from Cichoń’s diagram yield classes of small sets of reals. For instance, we show that there exist subsets N and M of and continuous functions such that • N is and , the collection of all vertical sections of N, is a basis for the ideal of measure zero subsets of ; • M is and is a basis for the ideal of meager subsets of ; •. From this we derive that for a separable metric space X, •if for all Borel (resp. ) sets with all vertical sections null, is null, then for all Borel (resp. ) sets with all vertical sections meager, is meager; •if there exists a Borel (resp. a “nice” ) set such that is a basis for measure zero sets, then there exists a Borel (resp. ) set such that is a basis for meager sets
@article{bwmeta1.element.bwnjournal-article-fmv147i2p135bwm, author = {Janusz Pawlikowski and Ireneusz Rec\l aw}, title = {Parametrized Cicho\'n's diagram and small sets}, journal = {Fundamenta Mathematicae}, volume = {146}, year = {1995}, pages = {135-155}, zbl = {0847.04004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv147i2p135bwm} }
Pawlikowski, Janusz; Recław, Ireneusz. Parametrized Cichoń's diagram and small sets. Fundamenta Mathematicae, Tome 146 (1995) pp. 135-155. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv147i2p135bwm/
[00000] [AR] A. Andryszczak and I. Recław, A note on strong measure zero sets, Acta Univ. Carolin. 34 (2) (1993), 7-9.
[00001] [B1] T. Bartoszyński, Additivity of measure implies additivity of category, Trans. Amer. Math. Soc. 281 (1984), 209-213. | Zbl 0538.03042
[00002] [B2] T. Bartoszyński, Combinatorial aspects of measure and category, Fund. Math. 127 (1987), 225-239. | Zbl 0635.04001
[00003] [BJ] T. Bartoszyński and H. Judah, Measure and Category in Set Theory, a forthcoming book.
[00004] [BR] T. Bartoszyński and I. Recław, Not every γ-set is strongly meager, preprint. | Zbl 0838.03037
[00005] [BSh] T. Bartoszyński and S. Shelah, Closed measure zero sets, Ann. Pure Appl. Logic 58 (1992), 93-110. | Zbl 0764.03018
[00006] [Bl] A. Blass, Questions and answers - a category arising in Linear Logic, Complexity Theory and Set Theory, preprint.
[00007] [C] T. Carlson, Strong measure zero and strongly meager sets, Proc. Amer. Math. Soc. 118 (1993), 577-586. | Zbl 0787.03037
[00008] [F1] D. H. Fremlin, On the additivity and cofinality of Radon measures, Mathematika 31 (1984) (2) (1985), 323-335. | Zbl 0551.28015
[00009] [F2] D. H. Fremlin, Cichoń's diagram, in: Sém. d'Initiation à l'Analyse, G. Choquet, M. Rogalski and J. Saint-Raymond (eds.), Publ. Math. Univ. Pierre et Marie Curie, 1983/84, (5-01)-(5-13).
[00010] [FMi] D. H. Fremlin and A. Miller, On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17-33. | Zbl 0665.54026
[00011] [G] F. Galvin, Indeterminacy of point-open games, Bull. Acad. Polon. Sci. 26 (1978), 445-449. | Zbl 0392.90101
[00012] [GMi] F. Galvin and A. W. Miller, γ-sets and other singular sets of real numbers, Topology Appl. 17 (1984), 145-155.
[00013] [GMS] F. Galvin, J. Mycielski and R. M. Solovay, Strong measure zero sets, Notices Amer. Math. Soc. 26 (1979), A-280.
[00014] [Ke] A. Kechris, Lectures on Classical Descriptive Set Theory, a forthcoming book.
[00015] [L] R. Laver, On the consistency of Borel's conjecture, Acta Math. 137 (1976), 151-169. | Zbl 0357.28003
[00016] [Mi1] A. W. Miller, Mapping a set of reals onto the reals, J. Symbolic Logic 48 (1983), 575-584. | Zbl 0527.03031
[00017] [Mi2] A. W. Miller, Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981), 93-114.
[00018] [Mi3] A. W. Miller, Special subsets of the real line, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), Elsevier, 1984, 203-233.
[00019] [Mi4] A. W. Miller, On the length of Borel hierarchies, Ann. Math. Logic 16 (1979), 233-267. | Zbl 0415.03038
[00020] [P1] J. Pawlikowski, Lebesgue measurability implies Baire property, Bull. Sci. Math. (2) 109 (1985), 321-324. | Zbl 0593.03026
[00021] [P2] J. Pawlikowski, Every Sierpiński set is strongly meager, Arch. Math. Logic, to appear. | Zbl 0871.04003
[00022] [P3] J. Pawlikowski, Property C'', strongly meager sets and subsets of the plane, preprint.
[00023] [Ra] J. Raisonnier, A mathematical proof of S. Shelah's theorem on the measure problem and related results, Israel J. Math. 48 (1984), 48-56. | Zbl 0596.03056
[00024] [RaSt] J. Raisonnier and J. Stern, The strength of measurability hypothesis, ibid. 50 (1985), 337-349. | Zbl 0602.03012
[00025] [R1] I. Recław, Every Lusin set is undetermined in the point-open game, Fund. Math. 144 (1994), 43-54. | Zbl 0809.04002
[00026] [R2] I. Recław, Cichoń's diagram and continuum hypothesis, circulated manuscript, 1992.
[00027] [R3] I. Recław, On small sets in the sense of measure and category, Fund. Math. 133 (1989), 254-260. | Zbl 0707.28001
[00028] [V] P. Vojtáš, Generalized Galois-Tukey connections between explicit relations on classical objects of real analysis, in: Set Theory of the Reals, H. Judah (ed.), Israel Math. Conf. Proc. 6, 1993, 619-643. | Zbl 0829.03027