When is the category of flat modules abelian?
García, J. ; Martínez Hernández, J.
Fundamenta Mathematicae, Tome 146 (1995), p. 83-91 / Harvested from The Polish Digital Mathematics Library

Let Fl(R) denote the category of flat right modules over an associative ring R. We find necessary and sufficient conditions for Fl(R) to be a Grothendieck category, in terms of properties of the ring R.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:212076
@article{bwmeta1.element.bwnjournal-article-fmv147i1p83bwm,
     author = {J. Garc\'\i a and J. Mart\'\i nez Hern\'andez},
     title = {When is the category of flat modules abelian?},
     journal = {Fundamenta Mathematicae},
     volume = {146},
     year = {1995},
     pages = {83-91},
     zbl = {0843.16002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv147i1p83bwm}
}
García, J.; Martínez Hernández, J. When is the category of flat modules abelian?. Fundamenta Mathematicae, Tome 146 (1995) pp. 83-91. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv147i1p83bwm/

[00000] [1] J. Asensio Mayor and J. Martínez Hernández, On flat and projective envelopes, J. Algebra 160 (1993), 434-440. | Zbl 0802.16003

[00001] [2] M. Auslander, Large modules over artin algebras, in: Algebra, Topology and Category Theory, Academic Press, 1976, 3-17.

[00002] [3] R. R. Colby, Rings which have flat injective modules, J. Algebra 35 (1975), 239-252. | Zbl 0306.16015

[00003] [4] E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), 189-209. | Zbl 0464.16019

[00004] [5] K. R. Fuller, On rings whose left modules are direct sums of finitely generated modules, Proc. Amer. Math. Soc. 54 (1976), 39-44. | Zbl 0325.16024

[00005] [6] J. L. García and J. Martínez Hernández, Purity through Gabriel's functor rings, Bull. Soc. Math. Belgique 45 (1993), 137-152. | Zbl 0804.18008

[00006] [7] J. Gómez Torrecillas, Anillos con módulos planos libres de torsión, Ph.D. Thesis, University of Granada, 1992.

[00007] [8] J. Gómez Torrecillas and B. Torrecillas, Flat torsionfree modules and QF-3 rings, Osaka J. Math. 30 (1993), 529-542. | Zbl 0803.16031

[00008] [9] M. Hoshino, On dominant dimension of Noetherian rings, Osaka J. Math. 26 (1989), 275-280. | Zbl 0701.16008

[00009] [10] S. Jøndrup and D. Simson, Indecomposable modules over semiperfect rings, J. Algebra 73 (1981), 23-29. | Zbl 0496.16033

[00010] [11] M. F. Jones, Coherence relative to an hereditary torsion theory, Comm. Algebra 10 (1982), 719-739. | Zbl 0483.16027

[00011] [12] R. W. Miller and M. L. Teply, On flatness relative to a torsion theory, ibid. 6 (1978), 1037-1071. | Zbl 0381.16012

[00012] [13] A. Rosenberg and D. Zelinsky, Finiteness of the injective hull, Math. Z. 70 (1959), 372-380. | Zbl 0084.26505

[00013] [14] D. Simson, Functor categories in which every flat object is projective, Bull. Acad. Polon. Sci. 22 (1974), 375-380. | Zbl 0328.18005

[00014] [15] D. Simson, On pure global dimension of locally finitely presented Grothendieck categories, Fund. Math. 96 (1977), 91-116. | Zbl 0361.18010

[00015] [16] B. Stenström, Rings of Quotients, Springer, Berlin, 1975.

[00016] [17] H. Tachikawa, QF-3 rings and categories of projective modules, J. Algebra 28 (1974), 408-413. | Zbl 0281.16009

[00017] [18] W. V. Vasconcelos, The Rings of Dimension Two, Marcel Dekker, New York, 1975. | Zbl 0324.13013