Let Z be an uncountable Polish space. It is a classical result that if I ⊆ ℝ is any interval (proper or not), f: I → ℝ and then f ○ g ∈ for every if and only if f is continuous on I, where stands for the αth class in Baire’s classification of Borel measurable functions. We shall prove that for the classes in Sierpiński’s classification of Borel measurable functions the analogous result holds where the condition that f is continuous is replaced by the condition that f is locally Lipschitz on I (thus it holds for the class of differences of semicontinuous functions, which is the class ). This theorem solves the problem raised by the work of Lindenbaum ([L] and [L, Corr.]) concerning the class of functions not leading outside by outer superpositions.
@article{bwmeta1.element.bwnjournal-article-fmv147i1p73bwm, author = {Micha\l\ Morayne}, title = {Sierpi\'nski's hierarchy and locally Lipschitz functions}, journal = {Fundamenta Mathematicae}, volume = {146}, year = {1995}, pages = {73-82}, zbl = {0833.26006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv147i1p73bwm} }
Morayne, Michał. Sierpiński's hierarchy and locally Lipschitz functions. Fundamenta Mathematicae, Tome 146 (1995) pp. 73-82. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv147i1p73bwm/
[00000] [CM1] J. Cichoń and M. Morayne, Universal functions and generalized classes of functions, Proc. Amer. Math. Soc. 102 (1988), 83-89. | Zbl 0646.26009
[00001] [CM2] J. Cichoń and M. Morayne, An abstract version of Sierpiński's theorem and the algebra generated by A and CA functions, Fund. Math. 142 (1993), 263-268. | Zbl 0824.54009
[00002] [H] F. Hausdorff, Set Theory, Chelsea, New York, 1962.
[00003] [Ke] S. Kempisty, Sur les séries itérées des fonctions continues, Fund. Math. 2 (1921), 64-73. | Zbl 48.0276.04
[00004] [Ku] K. Kuratowski, Topology I, Academic Press, New York and London, 1966.
[00005] [L] A. Lindenbaum, Sur les superpositions de fonctions représentables analytiquement, Fund. Math. 23 (1934), 15-37; Corrections, ibid., 304. | Zbl 60.0195.02
[00006] [Mau] R. D. Mauldin, Baire functions, Borel sets, and ordinary function systems, Adv. in Math. 12 (1974), 418-450. | Zbl 0278.26005
[00007] [Maz] S. Mazurkiewicz, Sur les fonctions de classe 1, Fund. Math. 2 (1921), 28-36.
[00008] [Mor] M. Morayne, Algebras of Borel measurable functions, ibid. 141 (1992), 229-242. | Zbl 0812.26004
[00009] [S1] W. Sierpiński, Sur les fonctions développables en séries absolument convergentes de fonctions continues, ibid. 2 (1921), 15-27. | Zbl 48.0276.01
[00010] [S2] W. Sierpiński, Démonstration d'un théorème sur les fonctions de première classe, ibid. 2 (1921), 37-40. | Zbl 48.0276.03