Sierpiński's hierarchy and locally Lipschitz functions
Morayne, Michał
Fundamenta Mathematicae, Tome 146 (1995), p. 73-82 / Harvested from The Polish Digital Mathematics Library

Let Z be an uncountable Polish space. It is a classical result that if I ⊆ ℝ is any interval (proper or not), f: I → ℝ and α<ω1 then f ○ g ∈ Bα(Z) for every gBα(Z)ZI if and only if f is continuous on I, where Bα(Z) stands for the αth class in Baire’s classification of Borel measurable functions. We shall prove that for the classes Sα(Z)(α>0) in Sierpiński’s classification of Borel measurable functions the analogous result holds where the condition that f is continuous is replaced by the condition that f is locally Lipschitz on I (thus it holds for the class of differences of semicontinuous functions, which is the class S1(Z)). This theorem solves the problem raised by the work of Lindenbaum ([L] and [L, Corr.]) concerning the class of functions not leading outside Sα(Z) by outer superpositions.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:212075
@article{bwmeta1.element.bwnjournal-article-fmv147i1p73bwm,
     author = {Micha\l\ Morayne},
     title = {Sierpi\'nski's hierarchy and locally Lipschitz functions},
     journal = {Fundamenta Mathematicae},
     volume = {146},
     year = {1995},
     pages = {73-82},
     zbl = {0833.26006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv147i1p73bwm}
}
Morayne, Michał. Sierpiński's hierarchy and locally Lipschitz functions. Fundamenta Mathematicae, Tome 146 (1995) pp. 73-82. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv147i1p73bwm/

[00000] [CM1] J. Cichoń and M. Morayne, Universal functions and generalized classes of functions, Proc. Amer. Math. Soc. 102 (1988), 83-89. | Zbl 0646.26009

[00001] [CM2] J. Cichoń and M. Morayne, An abstract version of Sierpiński's theorem and the algebra generated by A and CA functions, Fund. Math. 142 (1993), 263-268. | Zbl 0824.54009

[00002] [H] F. Hausdorff, Set Theory, Chelsea, New York, 1962.

[00003] [Ke] S. Kempisty, Sur les séries itérées des fonctions continues, Fund. Math. 2 (1921), 64-73. | Zbl 48.0276.04

[00004] [Ku] K. Kuratowski, Topology I, Academic Press, New York and London, 1966.

[00005] [L] A. Lindenbaum, Sur les superpositions de fonctions représentables analytiquement, Fund. Math. 23 (1934), 15-37; Corrections, ibid., 304. | Zbl 60.0195.02

[00006] [Mau] R. D. Mauldin, Baire functions, Borel sets, and ordinary function systems, Adv. in Math. 12 (1974), 418-450. | Zbl 0278.26005

[00007] [Maz] S. Mazurkiewicz, Sur les fonctions de classe 1, Fund. Math. 2 (1921), 28-36.

[00008] [Mor] M. Morayne, Algebras of Borel measurable functions, ibid. 141 (1992), 229-242. | Zbl 0812.26004

[00009] [S1] W. Sierpiński, Sur les fonctions développables en séries absolument convergentes de fonctions continues, ibid. 2 (1921), 15-27. | Zbl 48.0276.01

[00010] [S2] W. Sierpiński, Démonstration d'un théorème sur les fonctions de première classe, ibid. 2 (1921), 37-40. | Zbl 48.0276.03