The minimum uniform compactification of a metric space
Grant Woods, R.
Fundamenta Mathematicae, Tome 146 (1995), p. 39-59 / Harvested from The Polish Digital Mathematics Library

It is shown that associated with each metric space (X,d) there is a compactification udX of X that can be characterized as the smallest compactification of X to which each bounded uniformly continuous real-valued continuous function with domain X can be extended. Other characterizations of udX are presented, and a detailed study of the structure of udX is undertaken. This culminates in a topological characterization of the outgrowth udnn, where (n,d) is Euclidean n-space with its usual metric.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:212073
@article{bwmeta1.element.bwnjournal-article-fmv147i1p39bwm,
     author = {R. Grant Woods},
     title = {The minimum uniform compactification of a metric space},
     journal = {Fundamenta Mathematicae},
     volume = {146},
     year = {1995},
     pages = {39-59},
     zbl = {0837.54015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv147i1p39bwm}
}
Grant Woods, R. The minimum uniform compactification of a metric space. Fundamenta Mathematicae, Tome 146 (1995) pp. 39-59. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv147i1p39bwm/

[00000] [A] M. Atsuji, Uniform continuity of continuous functions of metric spaces, Pacific J. Math. 8 (1958), 1-16. | Zbl 0082.16207

[00001] [B] D. Bellamy, A non-metric indecomposable continuum, Duke Math. J. 38 (1971), 15-20. | Zbl 0219.54030

[00002] [Bl] R. L. Blair, Spaces in which special sets are Z-embedded, Canad. J. Math. 28 (1976), 673-690. | Zbl 0359.54009

[00003] [BSw] R. L. Blair and M. A. Swardson, Spaces with an Oz Stone-Čech compactification, Topology Appl. 36 (1990), 73-92. | Zbl 0721.54018

[00004] [C] S. Carlson, Completely uniformizable proximity spaces, Topology Proc. 10 (1985), 237-250. | Zbl 0609.54022

[00005] [Če] E. Čech, Topological Spaces, Wiley Interscience, Prague, 1966.

[00006] [vD] E. K. van Douwen, Remote points, Dissertationes Math. 188 (1981).

[00007] [D] J. Dugundji, Topology, Allyn and Bacon, 1965.

[00008] [E] R. Engelking, General Topology, Polish Scientific Publishers, Warszawa, 1977.

[00009] [GJ] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, 1960. | Zbl 0093.30001

[00010] [HY] J. Hocking and G. Young, Topology, Addison-Wesley, Reading, 1961.

[00011] [K] M. Katětov, On real-valued functions in topological spaces, Fund. Math. 38 (1951), 85-91. | Zbl 0045.25704

[00012] [LR] R. Levy and M. D. Rice, Techniques and examples in U-embedding, Topology Appl. 22 (1986), 157-174. | Zbl 0603.54017

[00013] [Ma] K. D. Magill, Jr., The lattice of compactifications of a locally compact space, Proc. London Math. Soc. (3) 18 (1968), 231-244. | Zbl 0161.42201

[00014] [M] D. Mattson, Discrete subsets of proximity spaces, Canad. J. Math. 31 (1979), 225-230. | Zbl 0409.54032

[00015] [NW] S. Naimpally and B. Warrack, Proximity Spaces, Cambridge Univ. Press, 1970. | Zbl 0206.24601

[00016] [PW] J. R. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer, 1987.

[00017] [R] M. C. Rayburn, Proximities, unpublished manuscript. | Zbl 0990.54023

[00018] [Ra] J. Rainwater, Spaces whose finest uniformity is metric, Pacific J. Math. 9 (1959), 567-570. | Zbl 0088.38301

[00019] [S] Yu. M. Smirnov, Mappings of systems of open sets, Mat. Sb. (73) 31 (1952), 152-166 (in Russian). | Zbl 0047.16102

[00020] [Wa] R. C. Walker, The Stone-Čech Compactification, Springer, New York, 1974. | Zbl 0292.54001

[00021] [Wi] S. Willard, General Topology, Addison-Wesley, Reading, 1970.

[00022] [Wo1] R. G. Woods, Certain properties of βX - X for σ-compact X, doctoral dissertation, McGill Univ., Montreal, 1969.

[00023] [Wo2] R. G. Woods, Coabsolutes of remainders of Stone-Čech compactifications, Pacific J. Math. 37 (1971), 545-560. | Zbl 0203.24802