Products of completion regular measures
Fremlin, David ; Grekas, S.
Fundamenta Mathematicae, Tome 146 (1995), p. 27-37 / Harvested from The Polish Digital Mathematics Library

We investigate the products of topological measure spaces, discussing conditions under which all open sets will be measurable for the simple completed product measure, and under which the product of completion regular measures will be completion regular. In passing, we describe a new class of spaces on which all completion regular Borel probability measures are τ-additive, and which have other interesting properties.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:212072
@article{bwmeta1.element.bwnjournal-article-fmv147i1p27bwm,
     author = {David Fremlin and S. Grekas},
     title = {Products of completion regular measures},
     journal = {Fundamenta Mathematicae},
     volume = {146},
     year = {1995},
     pages = {27-37},
     zbl = {0843.28005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv147i1p27bwm}
}
Fremlin, David; Grekas, S. Products of completion regular measures. Fundamenta Mathematicae, Tome 146 (1995) pp. 27-37. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv147i1p27bwm/

[00000] [1] J. Choksi and D. H. Fremlin, Completion regular measures on product spaces, Math. Ann. 241 (1979), 113-128. | Zbl 0387.60006

[00001] [2] W. W. Comfort, K.-H. Hoffmann and D. Remus, Topological groups and semigroups, pp. 57-114 in [11]. | Zbl 0798.22001

[00002] [3] R. Engelking, General Topology, Sigma Ser. Pure Math. 6, Heldermann, 1989.

[00003] [4] D. H. Fremlin, Products of Radon measures: a counterexample, Canad. Math. Bull. 19 (1976), 285-289. | Zbl 0353.28005

[00004] [5] Z. Frolík (ed.), General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Sympos., 1986, Heldermann, 1988.

[00005] [6] R. J. Gardner and W. F. Pfeffer, Borel measures, pp. 961-1043 in [15].

[00006] [7] S. Grekas and C. Gryllakis, Completion regular measures on product spaces with application to the existence of Baire strong liftings, Illinois J. Math. 35 (1991), 260-268. | Zbl 0714.28009

[00007] [8] C. Gryllakis, Products of completion regular measures, Proc. Amer. Math. Soc. 103 (1988), 563-568. | Zbl 0655.28005

[00008] [9] C. Gryllakis and G. Koumoullis, Completion regularity and τ-additivity of measures on product spaces, Compositio Math. 73 (1990), 329-344. | Zbl 0719.28005

[00009] [10] P. Halmos, Measure Theory, van Nostrand, 1950.

[00010] [11] M. Hušek and J. van Mill (eds.), Recent Progress in General Topology, Elsevier, 1992.

[00011] [12] S. Kakutani, Notes on infinite product spaces II, Proc. Imperial Acad. Tokyo 19 (1943), 184-188. | Zbl 0061.09701

[00012] [13] S. Kakutani and K. Kodaira, Über das Haarsche Mass in der lokal bikompakten Gruppe, ibid. 20 (1944), 444-450. | Zbl 0060.13501

[00013] [14] K. Kunen, Set Theory, North-Holland, 1980.

[00014] [15] K. Kunen and J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, North-Holland, 1984. | Zbl 0546.00022

[00015] [16] V. Kuz'minov, On a hypothesis of P. S. Aleksandrov in the theory of topological groups, Dokl. Akad. Nauk SSSR 125 (1959), 727-729 (in Russian).

[00016] [17] W. Moran, The additivity of measures on completely regular spaces, J. London Math. Soc. 43 (1968), 633-639. | Zbl 0159.07802

[00017] [18] P. Ressel, Some continuity and measurability results on spaces of measures, Math. Scand. 40 (1977), 69-78. | Zbl 0372.28010

[00018] [19] K. A. Ross and A. H. Stone, Products of separable spaces, Amer. Math. Monthly 71 (1964), 398-403. | Zbl 0119.38202

[00019] [20] M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 307 (1984).

[00020] [21] V. V. Uspenskiĭ, Why compact groups are dyadic, pp. 601-610 in [5].