Quasivarieties of pseudocomplemented semilattices
Adams, M. ; Dziobiak, Wiesław ; Gould, Matthew ; Schmid, Jürg
Fundamenta Mathematicae, Tome 146 (1995), p. 295-312 / Harvested from The Polish Digital Mathematics Library

Two properties of the lattice of quasivarieties of pseudocomplemented semilattices are established, namely, in the quasivariety generated by the 3-element chain, there is a sublattice freely generated by ω elements and there are 2ω quasivarieties.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:212068
@article{bwmeta1.element.bwnjournal-article-fmv146i3p295bwm,
     author = {M. Adams and Wies\l aw Dziobiak and Matthew Gould and J\"urg Schmid},
     title = {Quasivarieties of pseudocomplemented semilattices},
     journal = {Fundamenta Mathematicae},
     volume = {146},
     year = {1995},
     pages = {295-312},
     zbl = {0830.06003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv146i3p295bwm}
}
Adams, M.; Dziobiak, Wiesław; Gould, Matthew; Schmid, Jürg. Quasivarieties of pseudocomplemented semilattices. Fundamenta Mathematicae, Tome 146 (1995) pp. 295-312. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv146i3p295bwm/

[00000] [1] M. E. Adams, Implicational classes of pseudocomplemented distributive lattices, J. London Math. Soc. 13 (1976), 381-384. | Zbl 0358.06025

[00001] [2] M. E. Adams and W. Dziobiak, Q-universal quasivarieties of algebras, Proc. Amer. Math. Soc. 120 (1994), 1053-1059. | Zbl 0810.08007

[00002] [3] M. E. Adams and W. Dziobiak, Lattices of quasivarieties of 3-element algebras, J. Algebra 166 (1994), 181-210.

[00003] [4] M. E. Adams and M. Gould, A construction for pseudocomplemented semilattices and two applications, Proc. Amer. Math. Soc. 106 (1989), 899-905. | Zbl 0695.06004

[00004] [5] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer, New York, 1981.

[00005] [6] W. Dziobiak, On subquasivariety lattices of some varieties related with distributive p-algebras, Algebra Universalis 21 (1985), 62-67. | Zbl 0589.08007

[00006] [7] G. Grätzer, General Lattice Theory, Birkhäuser, Basel, 1978. | Zbl 0436.06001

[00007] [8] G. T. Jones, Pseudocomplemented semilattices, Ph.D. dissertation, U.C.L.A., 1972.

[00008] [9] A. I. Mal'cev, On certain frontier questions in algebra and mathematical logic, Proc. Internat. Congr. of Mathematicians, Moscow 1966, Mir, 1968, 217-231 (in Russian).

[00009] [10] A. I. Mal'cev, Algebraic Systems, Grundlehren Math. Wiss. 192, Springer, New York, 1973.

[00010] [11] H. P. Sankappanavar, Remarks on subdirectly irreducible pseudocomplemented semi-lattices and distributive pseudocomplemented lattices, Math. Japon. 25 (1980), 519-521. | Zbl 0472.06009

[00011] [12] M. V. Sapir, The lattice of quasivarieties of semigroups, Algebra Universalis 21 (1985), 172-180. | Zbl 0599.08014

[00012] [13] J. Schmid, Lee classes and sentences for pseudocomplemented semilattices, ibid. 25 (1988), 223-232. | Zbl 0619.06005

[00013] [14] J. Schmid, On amalgamation classes of pseudocomplemented semilattices, ibid. 29 (1992), 402-418. | Zbl 0783.06003

[00014] [15] A. Shafaat, On implicational completeness, Canad. J. Math. 26 (1974), 761-768. | Zbl 0295.08003

[00015] [16] M. P. Tropin, An embedding of a free lattice into the lattice of quasivarieties of distributive lattices with pseudocomplementation, Algebra i Logika 22 (1983), 159-167 (in Russian).

[00016] [17] A. Wroński, The number of quasivarieties of distributive lattices with pseudocomplementation, Polish Acad. Sci. Inst. Philos. Sociol. Sect. Logic 5 (1976), 115-121. | Zbl 0388.06009