We analyze several “strong meager” properties for filters on the natural numbers between the classical Baire property and a filter being . Two such properties have been studied by Talagrand and a few more combinatorial ones are investigated. In particular, we define the notion of a P⁺-filter, a generalization of the traditional concept of P-filter, and prove the existence of a non-meager P⁺-filter. Our motivation lies in understanding the structure of filters generated by complements of members of a maximal almost disjoint family.
@article{bwmeta1.element.bwnjournal-article-fmv146i3p283bwm, author = {Claude Laflamme}, title = {Strong meager properties for filters}, journal = {Fundamenta Mathematicae}, volume = {146}, year = {1995}, pages = {283-293}, zbl = {0839.03033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv146i3p283bwm} }
Laflamme, Claude. Strong meager properties for filters. Fundamenta Mathematicae, Tome 146 (1995) pp. 283-293. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv146i3p283bwm/
[00000] [1] T. Bartoszyński and H. Judah, Measure and category - filters on ω, in: Set Theory of the Continuum, H. Judah, W. Just and H. Woodin (eds.), Springer, 1992, 175-201. | Zbl 0787.03036
[00001] [2] W. Just, A. R. D. Mathias, K. Prikry and P. Simon, On the existence of large P-ideals, J. Symbolic Logic 55 (1990), 457-465. | Zbl 0715.04002
[00002] [3] C. Laflamme, Zapping small filters, Proc. Amer. Math. Soc. 114 (1992), 535-544. | Zbl 0746.04002
[00003] [4] S. Shelah, Cardinal invariants of the continuum, in: Axiomatic Set Theory, J. Baumgartner, D. Martin and S. Shelah (eds.), Contemp. Math. 31, Amer. Math. Soc., 1984, 183-207.
[00004] [5] P. Simon, private communication, August 1987.
[00005] [6] M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), 13-43. | Zbl 0435.46023
[00006] [7] M. Talagrand, Filtres: mesurabilité, rapidité, propriété de Baire forte, ibid. 74 (1982), 283-291. | Zbl 0503.04003