Let Λ be a finite-dimensional, basic and connected algebra over an algebraically closed field, and mod Λ be the category of finitely generated right Λ-modules. We say that Λ has acceptable projectives if the indecomposable projective Λ-modules lie either in a preprojective component without injective modules or in a standard coil, and the standard coils containing projectives are ordered. We prove that for such an algebra Λ the following conditions are equivalent: (a) Λ is tame, (b) the Tits form of Λ is weakly non-negative, (c) Λ is an iterated coil enlargement
@article{bwmeta1.element.bwnjournal-article-fmv146i3p251bwm, author = {Bertha Tom\'e}, title = {Iterated coil enlargements of algebras}, journal = {Fundamenta Mathematicae}, volume = {146}, year = {1995}, pages = {251-266}, zbl = {0866.16007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv146i3p251bwm} }
Tomé, Bertha. Iterated coil enlargements of algebras. Fundamenta Mathematicae, Tome 146 (1995) pp. 251-266. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv146i3p251bwm/
[00000] [1] I. Assem and A. Skowroński, Minimal representation-infinite coil algebras, Manuscripta Math. 67 (1990), 305-331. | Zbl 0696.16023
[00001] [2] I. Assem and A. Skowroński, Indecomposable modules over multicoil algebras, Math. Scand. 71 (1992), 31-61. | Zbl 0796.16014
[00002] [3] I. Assem and A. Skowroński, Multicoil algebras, in: Proc. ICRA VI (Ottawa, 1992), Canad. Math. Soc. Conf. Proc. 14, 1993, 29-68. | Zbl 0827.16010
[00003] [4] I. Assem, A. Skowroński and B. Tomé, Coil enlargements of algebras, Tsukuba J. Math., to appear. | Zbl 0860.16014
[00004] [5] M. Auslander and S. O. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981), 426-454. | Zbl 0457.16017
[00005] [6] K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. 28 (1983), 461-469. | Zbl 0532.16020
[00006] [7] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1981), 331-378. | Zbl 0482.16026
[00007] [8] Yu. Drozd, Tame and wild matrix problems, in: Proc. ICRA II (Ottawa, 1979), Lecture Notes in Math. 832, Springer, Berlin, 1980, 240-258.
[00008] [9] J. A. de la Pe na, On the representation type of one-point extensions of tame concealed algebras, Manuscripta Math. 61 (1988), 183-194. | Zbl 0647.16021
[00009] [10] J. A. de la Pe na and B. Tomé, Iterated tubular algebras, J. Pure Appl. Algebra 64 (1990), 303-314. | Zbl 0704.16006
[00010] [11] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
[00011] [12] A. Skowroński, Algebras of polynomial growth, in: Topics in Algebra, Banach Center Publ. 26, Part I, PWN, Warszawa, 1990, 535-568.
[00012] [13] A. Skowroński, Tame algebras with simply connected Galois coverings, in preparation. | Zbl 0876.16007
[00013] [14] A. Skowroński, Cycle-finite algebras, J. Pure Appl. Algebra, to appear. | Zbl 0841.16020
[00014] [15] A. Skowroński, Cycles in module categories, in: Proc. Canad. Math. Soc. Annual Seminar-NATO Advanced Research Workshop on Representations of Algebras and Related Topics (Ottawa 1992). | Zbl 0819.16013