I prove that the statement that “every linear order of size can be embedded in ” is consistent with MA + ¬ wKH.
@article{bwmeta1.element.bwnjournal-article-fmv146i3p215bwm, author = {Zoran Spasojevi\'c}, title = {Linear orders and MA + \neg wKH}, journal = {Fundamenta Mathematicae}, volume = {146}, year = {1995}, pages = {215-238}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv146i3p215bwm} }
Spasojević, Zoran. Linear orders and MA + ¬wKH. Fundamenta Mathematicae, Tome 146 (1995) pp. 215-238. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv146i3p215bwm/
[00000] [K] K. Kunen, Set Theory. An Introduction to Independence Proofs, North-Holland, 1980.
[00001] [L] R. Laver, Linear orders in under eventual dominance, in: Logic Colloquium ’78, M. Boffa, D. van Dalen and K. McAloon (eds.), North-Holland, 1979, 299-302.
[00002] [M] W. Mitchell, Aronszajn trees and the independence of the transfer property, Ann. Math. Logic 5 (1972), 21-46. | Zbl 0255.02069
[00003] [T] S. Todorčević, Some consequences of MA + ¬ wKH, Topology Appl. 12 (1981), 187-202.
[00004] [W] W. H. Woodin, Set theory and discontinuous homomorphisms from Banach algebras, Ph.D. thesis, University of California-Berkeley, 1983.