Homeomorphisms of inverse limit spaces of one-dimensional maps
Barge, Marcy ; Diamond, Beverly
Fundamenta Mathematicae, Tome 146 (1995), p. 171-187 / Harvested from The Polish Digital Mathematics Library

We present a new technique for showing that inverse limit spaces of certain one-dimensional Markov maps are not homeomorphic. In particular, the inverse limit spaces for the three maps from the tent family having periodic kneading sequence of length five are not homeomorphic.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:212060
@article{bwmeta1.element.bwnjournal-article-fmv146i2p171bwm,
     author = {Marcy Barge and Beverly Diamond},
     title = {Homeomorphisms of inverse limit spaces of one-dimensional maps},
     journal = {Fundamenta Mathematicae},
     volume = {146},
     year = {1995},
     pages = {171-187},
     zbl = {0851.54037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv146i2p171bwm}
}
Barge, Marcy; Diamond, Beverly. Homeomorphisms of inverse limit spaces of one-dimensional maps. Fundamenta Mathematicae, Tome 146 (1995) pp. 171-187. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv146i2p171bwm/

[00000] [1] J. M. Aarts and R. J. Fokkink, The classification of solenoids, Proc. Amer. Math. Soc. 111 (1991), 1161-1163. | Zbl 0768.54026

[00001] [2] M. Barge, Horseshoe maps and inverse limits, Pacific J. Math. 121 (1986), 29-39. | Zbl 0601.58049

[00002] [3] M. Barge and S. Holte, Nearly one-dimensional Henon attractors and inverse limits, preprint.

[00003] [4] M. Barge and J. Martin, Chaos, periodicity and snake-like continua, Trans. Amer. Math. Soc. 289 (1985), 355-365. | Zbl 0559.58014

[00004] [5] R. H. Bing, A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Canad. J. Math. 12 (1960), 209-230. | Zbl 0091.36204

[00005] [6] P. Collet and J. P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Birkhäuser, Boston, 1980. | Zbl 0458.58002

[00006] [7] W. Dębski, On topological types of the simplest indecomposable continua, Colloq. Math. 49 (1985), 203-211. | Zbl 0591.54026

[00007] [8] F. R. Gantmacher, The Theory of Matrices, Vol. II, Chelsea, New York, 1959. | Zbl 0085.01001

[00008] [9] J. Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys. 70 (1979), 133-160. | Zbl 0429.58012

[00009] [10] S. Holte, Generalized horseshoe maps and inverse limits, Pacific J. Math. 156 (1992), 297-305. | Zbl 0723.58034

[00010] [11] S. Holte, Inverse limits of Markov interval maps, preprint. | Zbl 1010.37020

[00011] [12] S. Holte and R. Roe, Inverse limits associated with the forced van der Pol equation, preprint. | Zbl 0813.58035

[00012] [13] D. A. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynamical Systems 4 (1984), 283-300. | Zbl 0546.58035

[00013] [14] M. C. McCord, Inverse limit sequences with covering maps, Trans. Amer. Math. Soc. 114 (1965), 197-209. | Zbl 0136.43603

[00014] [15] J. Mioduszewski, Mappings of inverse limits, Colloq. Math. 10 (1963), 39-44. | Zbl 0118.18205

[00015] [16] C. Robinson, Introduction to the Theory of Dynamical Systems, manuscript, July 1993.

[00016] [17] B. L. van der Waerden, Modern Algebra, Ungar, New York, 1953.

[00017] [18] W. T. Watkins, Homeomorphic classification of certain inverse limit spaces with open bonding maps, Pacific J. Math. 103 (1982), 589-601. | Zbl 0451.54027

[00018] [19] R. Williams, One-dimensional nonwandering sets, Topology 6 (1967), 473-487. | Zbl 0159.53702