Properly homotopic nontrivial planes are isotopic
Winters, Bobby
Fundamenta Mathematicae, Tome 146 (1995), p. 141-152 / Harvested from The Polish Digital Mathematics Library

It is proved that two planes that are properly homotopic in a noncompact, orientable, irreducible 3-manifold that is not homeomorphic to 3 are isotopic. The end-reduction techniques of E. M. Brown and C. D. Feustal and M. G. Brin and T. L. Thickstun are used.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:212057
@article{bwmeta1.element.bwnjournal-article-fmv146i2p141bwm,
     author = {Bobby Winters},
     title = {Properly homotopic nontrivial planes are isotopic},
     journal = {Fundamenta Mathematicae},
     volume = {146},
     year = {1995},
     pages = {141-152},
     zbl = {0835.57008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv146i2p141bwm}
}
Winters, Bobby. Properly homotopic nontrivial planes are isotopic. Fundamenta Mathematicae, Tome 146 (1995) pp. 141-152. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv146i2p141bwm/

[00000] [BT] M. G. Brin and T. L. Thickstun, 3-manifolds which are end 1-movable, Mem. Amer. Math. Soc. 411 (1989).

[00001] [BBF] E. M. Brown, M. S. Brown and C. D. Feustel, On properly embedding planes in 3-manifolds, Trans. Amer. Math. Soc. 55 (1976), 461-464. | Zbl 0323.57008

[00002] [BF] E. M. Brown and C. D. Feustel, On properly embedding planes in arbitrary 3-manifolds, Proc. Amer. Math. Soc. 94 (1985), 173-178. | Zbl 0577.57006

[00003] [He] J. Hempel, 3-manifolds, Ann. of Math. Stud. 86, Princeton Univ. Press, 1976.

[00004] [Wa] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87 (1968), 56-88. | Zbl 0157.30603

[00005] [W] B. N. Winters, Properly homotopic, nontrivial planes are parallel, Topology Appl. 48 (1992), 235-243. | Zbl 0814.57009