It is proved that two planes that are properly homotopic in a noncompact, orientable, irreducible 3-manifold that is not homeomorphic to are isotopic. The end-reduction techniques of E. M. Brown and C. D. Feustal and M. G. Brin and T. L. Thickstun are used.
@article{bwmeta1.element.bwnjournal-article-fmv146i2p141bwm, author = {Bobby Winters}, title = {Properly homotopic nontrivial planes are isotopic}, journal = {Fundamenta Mathematicae}, volume = {146}, year = {1995}, pages = {141-152}, zbl = {0835.57008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv146i2p141bwm} }
Winters, Bobby. Properly homotopic nontrivial planes are isotopic. Fundamenta Mathematicae, Tome 146 (1995) pp. 141-152. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv146i2p141bwm/
[00000] [BT] M. G. Brin and T. L. Thickstun, 3-manifolds which are end 1-movable, Mem. Amer. Math. Soc. 411 (1989).
[00001] [BBF] E. M. Brown, M. S. Brown and C. D. Feustel, On properly embedding planes in 3-manifolds, Trans. Amer. Math. Soc. 55 (1976), 461-464. | Zbl 0323.57008
[00002] [BF] E. M. Brown and C. D. Feustel, On properly embedding planes in arbitrary 3-manifolds, Proc. Amer. Math. Soc. 94 (1985), 173-178. | Zbl 0577.57006
[00003] [He] J. Hempel, 3-manifolds, Ann. of Math. Stud. 86, Princeton Univ. Press, 1976.
[00004] [Wa] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87 (1968), 56-88. | Zbl 0157.30603
[00005] [W] B. N. Winters, Properly homotopic, nontrivial planes are parallel, Topology Appl. 48 (1992), 235-243. | Zbl 0814.57009