Assume T is superstable and small. Using the multiplicity rank ℳ we find locally modular types in the same manner as U-rank considerations yield regular types. We define local versions of ℳ-rank, which also yield meager types.
@article{bwmeta1.element.bwnjournal-article-fmv146i2p121bwm, author = {Ludomir Newelski}, title = {M-rank and meager types}, journal = {Fundamenta Mathematicae}, volume = {146}, year = {1995}, pages = {121-139}, zbl = {0829.03016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv146i2p121bwm} }
Newelski, Ludomir. ℳ-rank and meager types. Fundamenta Mathematicae, Tome 146 (1995) pp. 121-139. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv146i2p121bwm/
[00000] [Ba] J. T. Baldwin, Fundamentals of Stability Theory, Springer, 1988.
[00001] [Hr-Sh] E. Hrushovski and S. Shelah, A dichotomy theorem for regular types, Ann. Pure Appl. Logic 45 (1989), 157-169. | Zbl 0697.03024
[00002] [Ne1] L. Newelski, A model and its subset, J. Symbolic Logic 57 (1992), 644-658. | Zbl 0774.03015
[00003] [Ne2] L. Newelski, Meager forking, Ann. Pure Appl. Logic, to appear.
[00004] [Pi] A. Pillay, Certain locally modular regular superstable groups, preprint, 1992.
[00005] [Sh] S. Shelah, Classification Theory, 2nd ed., North-Holland, 1990.