Let G be a finite group. We prove that every rational G-connected Hopf G-space with two nontrivial homotopy group systems is G-homotopy equivalent to an infinite loop G-space.
@article{bwmeta1.element.bwnjournal-article-fmv146i2p101bwm, author = {Ryszard Doman}, title = {Rational Hopf G-spaces with two nontrivial homotopy group systems}, journal = {Fundamenta Mathematicae}, volume = {146}, year = {1995}, pages = {101-106}, zbl = {0838.55011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv146i2p101bwm} }
Doman, Ryszard. Rational Hopf G-spaces with two nontrivial homotopy group systems. Fundamenta Mathematicae, Tome 146 (1995) pp. 101-106. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv146i2p101bwm/
[00000] [1] G. E. Bredon, Equivariant Cohomology Theories, Lecture Notes in Math. 34, Springer, 1967.
[00001] [2] J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264. | Zbl 0163.28202
[00002] [3] H. Scheerer, On rationalized H- and co-H-spaces, Manuscripta Math. 51 (1984), 63-87.
[00003] [4] G. W. Triantafillou, Equivariant minimal models, Trans. Amer. Math. Soc. 274 (1982), 509-532. | Zbl 0516.55010
[00004] [5] G. W. Triantafillou, Rationalization of Hopf G-spaces, Math. Z. 182 (1983), 485-500. | Zbl 0518.55008