A theory of non-absolutely convergent integrals in Rn with singularities on a regular boundary
Jurkat, W. ; Nonnenmacher, D.
Fundamenta Mathematicae, Tome 144 (1994), p. 69-84 / Harvested from The Polish Digital Mathematics Library

Specializing a recently developed axiomatic theory of non-absolutely convergent integrals in n, we are led to an integration process over quite general sets Aqn with a regular boundary. The integral enjoys all the usual properties and yields the divergence theorem for vector-valued functions with singularities in a most general form.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:212052
@article{bwmeta1.element.bwnjournal-article-fmv146i1p69bwm,
     author = {W. Jurkat and D. Nonnenmacher},
     title = {A theory of non-absolutely convergent integrals in Rn with singularities on a regular boundary},
     journal = {Fundamenta Mathematicae},
     volume = {144},
     year = {1994},
     pages = {69-84},
     zbl = {0817.26005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv146i1p69bwm}
}
Jurkat, W.; Nonnenmacher, D. A theory of non-absolutely convergent integrals in Rn with singularities on a regular boundary. Fundamenta Mathematicae, Tome 144 (1994) pp. 69-84. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv146i1p69bwm/

[00000] [Fed] H. Federer, Geometric Measure Theory, Springer, New York, 1969.

[00001] [Jar-Ku 1] J. Jarník and J. Kurzweil, A non-absolutely convergent integral which admits C1-transformations, Časopis Pěst. Mat. 109 (1984), 157-167. | Zbl 0555.26005

[00002] [Jar-Ku 2] J. Jarník and J. Kurzweil, A non-absolutely convergent integral which admits transformation and can be used for integration on manifolds, Czechoslovak Math. J. 35 (110) (1985), 116-139. | Zbl 0614.26007

[00003] [Jar-Ku 3] J. Jarník and J. Kurzweil, A new and more powerful concept of the PU integral, ibid. 38 (113) (1988), 8-48. | Zbl 0669.26006

[00004] [JKS] J. Jarník, J. Kurzweil and S. Schwabik, On Mawhin's approach to multiple nonabsolutely convergent integral, Časopis Pěst. Mat. 108 (1983), 356-380. | Zbl 0555.26004

[00005] [Ju] W. B. Jurkat, The Divergence Theorem and Perron integration with exceptional sets, Czechoslovak Math. J. 43 (118) (1993), 27-45. | Zbl 0789.26005

[00006] [Ju-No 1] W. B. Jurkat and D. J. F. Nonnenmacher, An axiomatic theory of non-absolutely convergent integrals in n, Fund. Math. 145 (1994), 221-242. | Zbl 0824.26007

[00007] [Ju-No 2] W. B. Jurkat and D. J. F. Nonnenmacher, A generalized n-dimensional Riemann integral and the Divergence Theorem with singularities, Acta Sci. Math. (Szeged) 59 (1994), 241-256. | Zbl 0810.26007

[00008] [Ju-No 3] W. B. Jurkat and D. J. F. Nonnenmacher, The Fundamental Theorem for the ν1-integral on more general sets and a corresponding Divergence Theorem with singularities, Czechoslovak Math. J., to appear. | Zbl 0832.26008

[00009] [Maw] J. Mawhin, Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields, ibid. 31 (106) (1981), 614-632. | Zbl 0562.26004

[00010] [No 1] D. J. F. Nonnenmacher, Sets of finite perimeter and the Gauss-Green Theorem with singularities, J. London Math. Soc., to appear. | Zbl 0835.26008

[00011] [No 2] D. J. F. Nonnenmacher, A constructive definition of the n-dimensional ν(S)-integral in terms of Riemann sums, preprint 1992, to appear.

[00012] [Pf 1] W. F. Pfeffer, The divergence theorem, Trans. Amer. Math. Soc. 295 (1986), 665-685. | Zbl 0596.26007

[00013] [Pf 2] W. F. Pfeffer, The Gauss-Green Theorem, Adv. in Math. 87 (1991), 93-147. | Zbl 0732.26013