Specializing a recently developed axiomatic theory of non-absolutely convergent integrals in , we are led to an integration process over quite general sets with a regular boundary. The integral enjoys all the usual properties and yields the divergence theorem for vector-valued functions with singularities in a most general form.
@article{bwmeta1.element.bwnjournal-article-fmv146i1p69bwm, author = {W. Jurkat and D. Nonnenmacher}, title = {A theory of non-absolutely convergent integrals in Rn with singularities on a regular boundary}, journal = {Fundamenta Mathematicae}, volume = {144}, year = {1994}, pages = {69-84}, zbl = {0817.26005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv146i1p69bwm} }
Jurkat, W.; Nonnenmacher, D. A theory of non-absolutely convergent integrals in Rn with singularities on a regular boundary. Fundamenta Mathematicae, Tome 144 (1994) pp. 69-84. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv146i1p69bwm/
[00000] [Fed] H. Federer, Geometric Measure Theory, Springer, New York, 1969.
[00001] [Jar-Ku 1] J. Jarník and J. Kurzweil, A non-absolutely convergent integral which admits -transformations, Časopis Pěst. Mat. 109 (1984), 157-167. | Zbl 0555.26005
[00002] [Jar-Ku 2] J. Jarník and J. Kurzweil, A non-absolutely convergent integral which admits transformation and can be used for integration on manifolds, Czechoslovak Math. J. 35 (110) (1985), 116-139. | Zbl 0614.26007
[00003] [Jar-Ku 3] J. Jarník and J. Kurzweil, A new and more powerful concept of the PU integral, ibid. 38 (113) (1988), 8-48. | Zbl 0669.26006
[00004] [JKS] J. Jarník, J. Kurzweil and S. Schwabik, On Mawhin's approach to multiple nonabsolutely convergent integral, Časopis Pěst. Mat. 108 (1983), 356-380. | Zbl 0555.26004
[00005] [Ju] W. B. Jurkat, The Divergence Theorem and Perron integration with exceptional sets, Czechoslovak Math. J. 43 (118) (1993), 27-45. | Zbl 0789.26005
[00006] [Ju-No 1] W. B. Jurkat and D. J. F. Nonnenmacher, An axiomatic theory of non-absolutely convergent integrals in , Fund. Math. 145 (1994), 221-242. | Zbl 0824.26007
[00007] [Ju-No 2] W. B. Jurkat and D. J. F. Nonnenmacher, A generalized n-dimensional Riemann integral and the Divergence Theorem with singularities, Acta Sci. Math. (Szeged) 59 (1994), 241-256. | Zbl 0810.26007
[00008] [Ju-No 3] W. B. Jurkat and D. J. F. Nonnenmacher, The Fundamental Theorem for the -integral on more general sets and a corresponding Divergence Theorem with singularities, Czechoslovak Math. J., to appear. | Zbl 0832.26008
[00009] [Maw] J. Mawhin, Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields, ibid. 31 (106) (1981), 614-632. | Zbl 0562.26004
[00010] [No 1] D. J. F. Nonnenmacher, Sets of finite perimeter and the Gauss-Green Theorem with singularities, J. London Math. Soc., to appear. | Zbl 0835.26008
[00011] [No 2] D. J. F. Nonnenmacher, A constructive definition of the n-dimensional ν(S)-integral in terms of Riemann sums, preprint 1992, to appear.
[00012] [Pf 1] W. F. Pfeffer, The divergence theorem, Trans. Amer. Math. Soc. 295 (1986), 665-685. | Zbl 0596.26007
[00013] [Pf 2] W. F. Pfeffer, The Gauss-Green Theorem, Adv. in Math. 87 (1991), 93-147. | Zbl 0732.26013