Co-H-structures on equivariant Moore spaces
Arkowitz, Martin ; Golasiński, Marek
Fundamenta Mathematicae, Tome 144 (1994), p. 59-67 / Harvested from The Polish Digital Mathematics Library

Let G be a finite group, 𝕆G the category of canonical orbits of G and A:𝕆G𝔸b a contravariant functor to the category of abelian groups. We investigate the set of G-homotopy classes of comultiplications of a Moore G-space of type (A,n) where n ≥ 2 and prove that if such a Moore G-space X is a cogroup, then it has a unique comultiplication if dim X < 2n - 1. If dim X = 2n-1, then the set of comultiplications of X is in one-one correspondence with Extn-1(A,AA). Then the case G=pk leads to an example of infinitely many G-homotopically distinct G-maps φi:XY such that φiH, φjH:XHYH are homotopic for all i,j and all subgroups H ⊆ G.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:212051
@article{bwmeta1.element.bwnjournal-article-fmv146i1p59bwm,
     author = {Martin Arkowitz and Marek Golasi\'nski},
     title = {Co-H-structures on equivariant Moore spaces},
     journal = {Fundamenta Mathematicae},
     volume = {144},
     year = {1994},
     pages = {59-67},
     zbl = {0827.55006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv146i1p59bwm}
}
Arkowitz, Martin; Golasiński, Marek. Co-H-structures on equivariant Moore spaces. Fundamenta Mathematicae, Tome 144 (1994) pp. 59-67. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv146i1p59bwm/

[00000] [A-G] M. Arkowitz and M. Golasiński, Co-H-structures on Moore spaces of type (A, 2), Canad. J. Math., to appear. | Zbl 0829.55006

[00001] [Br] G. E. Bredon, Equivariant Cohomology Theories, Lecture Notes in Math. 34, Springer, 1967.

[00002] [Ca] G. Carlsson, A counterexample to a conjecture of Steenrod, Invent. Math. 64 (1981), 171-174. | Zbl 0477.55007

[00003] [Co] S. R. Costenoble and S. Waner, A nonexistence result for Moore G-spectra, Proc. Amer. Math. Soc. 113 (1991), 265-274.

[00004] [Do1] R. Doman, Non-G-equivalent Moore G-spaces of the same type, ibid. 103 (1988), 1317-1321. | Zbl 0666.55007

[00005] [Do2] R. Doman, Moore G-spaces which are not co-Hopf G-spaces, Canad. Math. Bull. 32 (1989), 365-368. | Zbl 0645.55007

[00006] [D-D-K] E. Dror, Dwyer and D. M. Kan, Equivariant maps which are self homotopy equivalences, Proc. Amer. Math. Soc. 80 (1980), 670-672. | Zbl 0454.55018

[00007] [El] A. D. Elmendorf, Systems of fixed point sets, Trans. Amer. Math. Soc. 277 (1983), 275-284.

[00008] [Il1] S. Illman, Equivariant algebraic topology, Ph. D. Thesis, Princeton University, Princeton, N.J., 1972.

[00009] [Il2] S. Illman, Equivariant singular homology and cohomology I, Mem. Amer. Math. Soc. 156 (1975).

[00010] [Ka1] P. J. Kahn, Rational Moore G-spaces, Trans. Amer. Math. Soc. 298 (1986), 245-271. | Zbl 0616.55009

[00011] [Ka2] P. J. Kahn, Equivariant homology decompositions, ibid., 273-287.

[00012] [Ka3] P. J. Kahn, Steenrod's problem and k-invariants of certain classifying spaces, in: Algebraic K-Theory, Lecture Notes in Math. 967, Springer, 1982, 195-214.

[00013] [Ma] T. Matumoto, On G-CW complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo 18 (1971), 363-374.

[00014] [M-T] R. E. Mosher and M. C. Tangora, Cohomology Operations and Applications in Homotopy Theory, Harper & Row, New York, 1968. | Zbl 0153.53302

[00015] [Qu] D. G. Quillen, Homotopical Algebra, Lecture Notes in Math. 43, Springer, 1967.

[00016] [Sm] J. R. Smith, Equivariant Moore spaces II - The low dimensional case, J. Pure Appl. Algebra 36 (1985), 187-204. | Zbl 0561.55017

[00017] [Tr] G. V. Triantafillou, Rationalization of Hopf G-spaces, Math. Z. 182 (1983), 485-500. | Zbl 0518.55008

[00018] [Un] H. Unsöld, Topological minimal algebras and Sullivan-de Rham equivalence, Astérisque 113-114 (1984), 337-343.