The hyperspaces and in consisting respectively of all compact absolute neighborhood retracts and all compact absolute retracts are studied. It is shown that both have the Borel type of absolute -spaces and that, indeed, they are not -spaces. The main result is that is an absorber for the class of all absolute -spaces and is therefore homeomorphic to the standard model space of this class.
@article{bwmeta1.element.bwnjournal-article-fmv146i1p31bwm, author = {Tadeusz Dobrowolski and Leonard Rubin}, title = {The space of ANR's in $$\mathbb{R}$^n$ }, journal = {Fundamenta Mathematicae}, volume = {144}, year = {1994}, pages = {31-58}, zbl = {0817.54008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv146i1p31bwm} }
Dobrowolski, Tadeusz; Rubin, Leonard. The space of ANR’s in $ℝ^n$ . Fundamenta Mathematicae, Tome 144 (1994) pp. 31-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv146i1p31bwm/
[00000] [BGvM] J. Baars, H. Gladdines and J. van Mill, Absorbing systems in infinite-dimensional manifolds, Topology Appl. 50 (1993), 147-182. | Zbl 0794.57005
[00001] [BP] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa, 1975. | Zbl 0304.57001
[00002] [BM] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional retracts, Michigan Math. J. 33 (1986), 291-313. | Zbl 0629.54011
[00003] [Bor] K. Borsuk, On some metrizations of the hyperspace of compact sets, Fund. Math. 41 (1954), 168-202. | Zbl 0065.38102
[00004] [C1] R. Cauty, L'espace des pseudo-arcs d'une surface, Trans. Amer. Math. Soc. 331 (1992), 247-263.
[00005] [C2] R. Cauty, L'espace des arcs d'une surface, ibid. 332 (1992), 193-209. | Zbl 0762.54012
[00006] [C3] R. Cauty, Les fonctions continues et les fonctions intégrables au sens de Riemann comme sous-espaces de , Fund. Math. 139 (1991), 23-36.
[00007] [CDGvM] R. Cauty, T. Dobrowolski, H. Gladdines et J. van Mill, Les hyperespaces des rétractes absolus et des rétractes absolus de voisinage du plan, preprint.
[00008] [Cu1] D. W. Curtis, Hyperspaces of finite subsets as boundary sets, Topology Appl. 22 (1986), 97-107. | Zbl 0575.54009
[00009] [Cu2] D. W. Curtis, Hyperspaces of non-compact metric spaces, Compositio Math. 40 (1986), 139-152.
[00010] [CN] D. W. Curtis and N. T. Nhu, Hyperspaces of finite subsets which are homeomorphic to -dimensional linear metric spaces, Topology Appl. 19 (1985), 251-260. | Zbl 0587.54015
[00011] [DvMM] J. J. Dijkstra, J. van Mill and J. Mogilski, The space of infinite-dimensional compacta and other topological copies of , Pacific J. Math. 152 (1992), 255-273. | Zbl 0786.54012
[00012] [DM] T. Dobrowolski and W. Marciszewski, Classification of function spaces with the pointwise topology determined by a countable dense set, preprint. | Zbl 0834.46016
[00013] [DR] T. Dobrowolski and L. R. Rubin, The hyperspaces of infinite-dimensional compacta for covering and cohomological dimension are homeomorphic, Pacific J. Math. 164 (1994), 15-39. | Zbl 0801.54005
[00014] [GvM] H. Gladdines and J. van Mill, Hyperspaces of Peano continua of euclidean spaces, Fund. Math. 142 (1993), 173-188. | Zbl 0811.54028
[00015] [Kur1] K. Kuratowski, Sur une méthode de métrisation complète de certains espaces d'ensembles compacts, ibid. 43 (1956), 114-138. | Zbl 0071.38402
[00016] [Kur2] K. Kuratowski, Topology I, Academic Press, New York and London, 1966.
[00017] [MS] S. Mardešić and J. Segal, Shape Theory, North-Holland, Amsterdam, 1982.
[00018] [vM] J. van Mill, Infinite-Dimensional Topology: prerequisites and introduction, North-Holland, Amsterdam, 1989.
[00019] [SR] J. Saint Raymond, Fonctions boréliennes sur un quotient, Bull. Sci. Math. (2) 100 (1976), 141-147. | Zbl 0336.54015
[00020] [Tor] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of -manifolds, Fund. Math. 101 (1978), 93-110. | Zbl 0406.55003