The space of ANR’s in n
Dobrowolski, Tadeusz ; Rubin, Leonard
Fundamenta Mathematicae, Tome 144 (1994), p. 31-58 / Harvested from The Polish Digital Mathematics Library

The hyperspaces ANR(n) and AR(n) in 2n(n3) consisting respectively of all compact absolute neighborhood retracts and all compact absolute retracts are studied. It is shown that both have the Borel type of absolute Gδσδ-spaces and that, indeed, they are not Fσδσ-spaces. The main result is that ANR(n) is an absorber for the class of all absolute Gδσδ-spaces and is therefore homeomorphic to the standard model space Ω3 of this class.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:212050
@article{bwmeta1.element.bwnjournal-article-fmv146i1p31bwm,
     author = {Tadeusz Dobrowolski and Leonard Rubin},
     title = {The space of ANR's in $$\mathbb{R}$^n$
            },
     journal = {Fundamenta Mathematicae},
     volume = {144},
     year = {1994},
     pages = {31-58},
     zbl = {0817.54008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv146i1p31bwm}
}
Dobrowolski, Tadeusz; Rubin, Leonard. The space of ANR’s in $ℝ^n$
            . Fundamenta Mathematicae, Tome 144 (1994) pp. 31-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv146i1p31bwm/

[00000] [BGvM] J. Baars, H. Gladdines and J. van Mill, Absorbing systems in infinite-dimensional manifolds, Topology Appl. 50 (1993), 147-182. | Zbl 0794.57005

[00001] [BP] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa, 1975. | Zbl 0304.57001

[00002] [BM] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional retracts, Michigan Math. J. 33 (1986), 291-313. | Zbl 0629.54011

[00003] [Bor] K. Borsuk, On some metrizations of the hyperspace of compact sets, Fund. Math. 41 (1954), 168-202. | Zbl 0065.38102

[00004] [C1] R. Cauty, L'espace des pseudo-arcs d'une surface, Trans. Amer. Math. Soc. 331 (1992), 247-263.

[00005] [C2] R. Cauty, L'espace des arcs d'une surface, ibid. 332 (1992), 193-209. | Zbl 0762.54012

[00006] [C3] R. Cauty, Les fonctions continues et les fonctions intégrables au sens de Riemann comme sous-espaces de L1, Fund. Math. 139 (1991), 23-36.

[00007] [CDGvM] R. Cauty, T. Dobrowolski, H. Gladdines et J. van Mill, Les hyperespaces des rétractes absolus et des rétractes absolus de voisinage du plan, preprint.

[00008] [Cu1] D. W. Curtis, Hyperspaces of finite subsets as boundary sets, Topology Appl. 22 (1986), 97-107. | Zbl 0575.54009

[00009] [Cu2] D. W. Curtis, Hyperspaces of non-compact metric spaces, Compositio Math. 40 (1986), 139-152.

[00010] [CN] D. W. Curtis and N. T. Nhu, Hyperspaces of finite subsets which are homeomorphic to 0-dimensional linear metric spaces, Topology Appl. 19 (1985), 251-260. | Zbl 0587.54015

[00011] [DvMM] J. J. Dijkstra, J. van Mill and J. Mogilski, The space of infinite-dimensional compacta and other topological copies of (f2)ω, Pacific J. Math. 152 (1992), 255-273. | Zbl 0786.54012

[00012] [DM] T. Dobrowolski and W. Marciszewski, Classification of function spaces with the pointwise topology determined by a countable dense set, preprint. | Zbl 0834.46016

[00013] [DR] T. Dobrowolski and L. R. Rubin, The hyperspaces of infinite-dimensional compacta for covering and cohomological dimension are homeomorphic, Pacific J. Math. 164 (1994), 15-39. | Zbl 0801.54005

[00014] [GvM] H. Gladdines and J. van Mill, Hyperspaces of Peano continua of euclidean spaces, Fund. Math. 142 (1993), 173-188. | Zbl 0811.54028

[00015] [Kur1] K. Kuratowski, Sur une méthode de métrisation complète de certains espaces d'ensembles compacts, ibid. 43 (1956), 114-138. | Zbl 0071.38402

[00016] [Kur2] K. Kuratowski, Topology I, Academic Press, New York and London, 1966.

[00017] [MS] S. Mardešić and J. Segal, Shape Theory, North-Holland, Amsterdam, 1982.

[00018] [vM] J. van Mill, Infinite-Dimensional Topology: prerequisites and introduction, North-Holland, Amsterdam, 1989.

[00019] [SR] J. Saint Raymond, Fonctions boréliennes sur un quotient, Bull. Sci. Math. (2) 100 (1976), 141-147. | Zbl 0336.54015

[00020] [Tor] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of l2-manifolds, Fund. Math. 101 (1978), 93-110. | Zbl 0406.55003