Minor cycles for interval maps
Misiurewicz, Michał
Fundamenta Mathematicae, Tome 144 (1994), p. 281-304 / Harvested from The Polish Digital Mathematics Library

For continuous maps of an interval into itself we consider cycles (periodic orbits) that are non-reducible in the sense that there is no non-trivial partition into blocks of consecutive points permuted by the map. Among them we identify the miror ones. They are those whose existence does not imply existence of other non-reducible cycles of the same period. Moreover, we find minor patterns of a given period with minimal entropy.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:212047
@article{bwmeta1.element.bwnjournal-article-fmv145i3p281bwm,
     author = {Micha\l\ Misiurewicz},
     title = {Minor cycles for interval maps},
     journal = {Fundamenta Mathematicae},
     volume = {144},
     year = {1994},
     pages = {281-304},
     zbl = {0818.58014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv145i3p281bwm}
}
Misiurewicz, Michał. Minor cycles for interval maps. Fundamenta Mathematicae, Tome 144 (1994) pp. 281-304. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv145i3p281bwm/

[00000] [ALMY] Ll. Alsedà, J. Llibre and M. Misiurewicz, Periodic orbits of maps of Y, Trans. Amer. Math. Soc. 313 (1989), 475-538 | Zbl 0803.54032

[00001] [ALM] Ll. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Adv. Ser. Nonlinear Dynam. 5, World Scientific, 1993. | Zbl 0843.58034

[00002] [BCMM] C. Bernhardt, E. Coven, M. Misiurewicz and I. Mulvey, Comparing periodic orbits of maps of the interval, Trans. Amer. Math. Soc., to appear.

[00003] [BGMY] L. Block, J. Guckenheimer, M. Misiurewicz and L.-S. Young, Periodic points and topological entropy of one dimensional maps, in: Global Theory of Dynamical Systems, Lecture Notes in Math. 819, Springer, Berlin, 1980, 18-34.

[00004] [FM] J. Franks and M. Misiurewicz, Cycles for disk homeomorphisms and thick trees, in: Nielsen Theory and Dynamical Systems, C. K. McCord (ed.), Contemp. Math. 152, Amer. Math. Soc., Providence, R.I., 1993, 69-139 | Zbl 0793.58029

[00005] [LMPY] T.-Y. Li, M. Misiurewicz, G. Pianigiani and J. Yorke, No division implies chaos, Trans. Amer. Math. Soc. 273 (1982), 191-199. | Zbl 0495.58018

[00006] [S] P. Štefan, A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54 (1977), 237-248. | Zbl 0354.54027