Cohomology of some graded differential algebras
Andrzejewski, Wojciech ; Tralle, Aleksiej
Fundamenta Mathematicae, Tome 144 (1994), p. 181-204 / Harvested from The Polish Digital Mathematics Library

We study cohomology algebras of graded differential algebras which are models for Hochschild homology of some classes of topological spaces (e.g. homogeneous spaces of compact Lie groups). Explicit formulae are obtained. Some applications to cyclic homology are given.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:212042
@article{bwmeta1.element.bwnjournal-article-fmv145i2p181bwm,
     author = {Wojciech Andrzejewski and Aleksiej Tralle},
     title = {Cohomology of some graded differential algebras},
     journal = {Fundamenta Mathematicae},
     volume = {144},
     year = {1994},
     pages = {181-204},
     zbl = {0847.55007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv145i2p181bwm}
}
Andrzejewski, Wojciech; Tralle, Aleksiej. Cohomology of some graded differential algebras. Fundamenta Mathematicae, Tome 144 (1994) pp. 181-204. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv145i2p181bwm/

[00000] [1] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207. | Zbl 0052.40001

[00001] [2] D. Burghelea, Cyclic homology and the algebraic K-theory of spaces I, in: Contemp. Math. 55, Amer. Math. Soc., 1986, 89-115.

[00002] [3] D. Burghelea and Z. Fiedorowicz, Cyclic homology and algebraic K-theory of spaces - II, Topology 25 (1986), 303-317. | Zbl 0639.55003

[00003] [4] D. Burghelea and M. Vigué-Poirrier, Cyclic homology of commutative algebras I, in: Lecture Notes in Math. 1318, Springer, 1988, 51-72.

[00004] [5] A. Connes and H. Moscovici, Cyclic cohomology, the Novikov conjecture and hyperbolic groups, Topology 29 (1990), 345-388. | Zbl 0759.58047

[00005] [6] L. Flatto, Invariants of reflection groups, Enseign. Math. 24 (1978), 237-293. | Zbl 0401.20041

[00006] [7] T. Goodwillie, Cyclic homology, derivations, and the free loop space, Topology 24 (1985), 187-215. | Zbl 0569.16021

[00007] [8] V. Greub, S. Halperin and R. Vanstone, Curvature, Connections and Cohomology, Vol. 3, Academic Press, New York, 1976. | Zbl 0372.57001

[00008] [9] J. A. Guccione, J. J. Guccione, M. J. Redondo and O. R. Villamayor, Hochschild and cyclic homology of hypersurfaces, Adv. in Math. 95 (1992), 18-60. | Zbl 0771.13007

[00009] [10] S. Halperin and M. Vigué-Poirrier, The homology of a free loop space, Pacific J. Math. 147 (1991), 311-324. | Zbl 0666.55011

[00010] [11] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, 1985. | Zbl 0563.13001

[00011] [12] A. Lago and A. Rodicio, Generalized Koszul complexes and Hochschild (co-)homology of complete intersections, Invent. Math. 107 (1992), 433-446. | Zbl 0768.14007

[00012] [13] D. Lehmann, Théorie homotopique des formes différentielles (d'après D. Sullivan), Astérisque 45 (1977).

[00013] [14] J. L. Loday, Cyclic Homology, Springer, 1992.

[00014] [15] J. McCleary, User's Guide to Spectral Sequences, Publish or Perish, 1985.

[00015] [16] A. Tralle, Cyclic homology of some topological spaces which are formal in the sense of Sullivan, Mat. Zametki 50 (6) (1991), 131-141 (in Russian). | Zbl 0735.55009

[00016] [17] A. Tralle, On Hochschild and cyclic homology of certain homogeneous spaces, Czechoslovak Math. J. 43 (1993), 615-634. | Zbl 0802.55010

[00017] [18] M. Vigué-Poirrier, Homologie cyclique des espaces formels, J. Pure Appl. Algebra, to appear.

[00018] [19] M. Vigué-Poirrier and D. Burghelea, A model for cyclic homology and algebraic K-theory of 1-connected topological spaces, J. Differential Geom. 22 (1985), 243-253. | Zbl 0595.55009

[00019] [20] M. Vigué-Poirrier and D. Sullivan, The homology theory of the closed geodesic problem, ibid. 11 (1976), 633-644. | Zbl 0361.53058

[00020] [21] E. Witten, The index of the Dirac operator in loop space, in: Lecture Notes in Math. 1326, Springer, 1988, 161-181.