Decomposing Baire class 1 functions into continuous functions
Shelah, Saharon ; Steprans, Juris
Fundamenta Mathematicae, Tome 144 (1994), p. 171-180 / Harvested from The Polish Digital Mathematics Library

It is shown to be consistent that every function of first Baire class can be decomposed into 1 continuous functions yet the least cardinal of a dominating family in ωω is 2. The model used in the one obtained by adding ω2 Miller reals to a model of the Continuum Hypothesis.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:212041
@article{bwmeta1.element.bwnjournal-article-fmv145i2p171bwm,
     author = {Saharon Shelah and Juris Steprans},
     title = {Decomposing Baire class 1 functions into continuous functions},
     journal = {Fundamenta Mathematicae},
     volume = {144},
     year = {1994},
     pages = {171-180},
     zbl = {0821.03022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv145i2p171bwm}
}
Shelah, Saharon; Steprans, Juris. Decomposing Baire class 1 functions into continuous functions. Fundamenta Mathematicae, Tome 144 (1994) pp. 171-180. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv145i2p171bwm/

[00000] [1] J. Cichoń, M. Morayne, J. Pawlikowski, and S. Solecki, Decomposing Baire functions, J. Symbolic Logic 56 (1991), 1273-1283. | Zbl 0742.04003

[00001] [2] M. Groszek, Combinatorics on ideals and forcing with trees, ibid. 52 (1987), 582-593. | Zbl 0646.03048

[00002] [3] A. Miller, Rational perfect set forcing, in: Axiomatic Set Theory, D. A. Martin, J. Baumgartner and S. Shelah (eds.), Contemp. Math. 31, Amer. Math. Soc., Providence, R.I., 1984, 143-159.

[00003] [4] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, Berlin, 1982.

[00004] [5] J. Steprāns, A very discontinuous Borel function, J. Symbolic Logic 58 (1993), 1268-1283. | Zbl 0805.03036