We construct a family of spaces with “nice” structure which is universal in the class of all compact metrizable spaces of large transfinite dimension , or, equivalently, of small transfinite dimension ; that is, the family consists of compact metrizable spaces whose transfinite dimension is , and every compact metrizable space with transfinite dimension is embeddable in a space of the family. We show that the least possible cardinality of such a universal family is equal to the least possible cardinality of a dominating sequence of irrational numbers.
@article{bwmeta1.element.bwnjournal-article-fmv145i2p121bwm, author = {Wojciech Olszewski}, title = {Universal spaces in the theory of transfinite dimension, II}, journal = {Fundamenta Mathematicae}, volume = {144}, year = {1994}, pages = {121-139}, zbl = {0812.54042}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv145i2p121bwm} }
Olszewski, Wojciech. Universal spaces in the theory of transfinite dimension, II. Fundamenta Mathematicae, Tome 144 (1994) pp. 121-139. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv145i2p121bwm/
[00000] [1] E. K. van Douwen, The Integers and Topology, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, 1984, 111-167.
[00001] [2] R. Engelking, Dimension Theory, PWN, Warszawa, 1978.
[00002] [3] R. Engelking, Transfinite dimension, in: Surveys in General Topology, G. M. Reed (ed.), Academic Press, 1980, 131-161.
[00003] [4] R. Engelking, General Topology, Heldermann, Berlin, 1989.
[00004] [5] L. A. Luxemburg, On transfinite inductive dimensions, Dokl. Akad. Nauk SSSR 209 (1973), 295-298 (in Russian); English transl.: Soviet Math. Dokl. 14 (1973), 388-393. | Zbl 0283.54019
[00005] [6] L. A. Luxemburg, On compactifications of metric spaces with transfinite dimensions, Pacific J. Math. 101 (1982), 399-450. | Zbl 0451.54030
[00006] [7] W. Olszewski, Universal spaces for locally finite-dimensional and strongly countable-dimensional metrizable spaces, Fund. Math. 135 (1990), 97-109. | Zbl 0743.54019
[00007] [8] W. Olszewski, Universal spaces in the theory of transfinite dimension, I, ibid. 144 (1994), 243-258. | Zbl 0812.54041