We consider a set, L, of lines in and a partition of L into some number of sets: . We seek a corresponding partition such that each line l in meets the set in a set whose cardinality has some fixed bound, . We determine equivalences between the bounds on the size of the continuum, , and some relationships between p, and .
@article{bwmeta1.element.bwnjournal-article-fmv145i2p101bwm, author = {Paul Erd\"os and Steve Jackson and R. Mauldin}, title = {On partitions of lines and space}, journal = {Fundamenta Mathematicae}, volume = {144}, year = {1994}, pages = {101-119}, zbl = {0809.04004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv145i2p101bwm} }
Erdös, Paul; Jackson, Steve; Mauldin, R. On partitions of lines and space. Fundamenta Mathematicae, Tome 144 (1994) pp. 101-119. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv145i2p101bwm/
[00000] [B] F. Bagemihl, A proposition of elementary plane geometry that implies the continuum hypothesis, Z. Math. Logik Grundlag. Math. 7 (1961), 77-79. | Zbl 0121.01604
[00001] [BH] G. Bergman and E. Hrushovski, Identities of cofinal sublattices, Order 2 (1985), 173-191. | Zbl 0579.06010
[00002] [D1] R. Davies, On a problem of Erdős concerning decompositions of the plane, Proc. Cambridge Philos. Soc. 59 (1963), 33-36. | Zbl 0121.25702
[00003] [D2] R. Davies, On a denumerable partition problem of Erdős, ibid., 501-502. | Zbl 0121.01602
[00004] [Er] P. Erdős, Some remarks on set theory. IV, Michigan Math. J. 2 (1953-54), 169-173.
[00005] [EGH] P. Erdős, F. Galvin and A. Hajnal, On set-systems having large chromatic number and not containing prescribed subsystems, in: Infinite and Finite Sets (Colloq., Keszthely; dedicated to P. Erdős on his 60th birthday, 1973), Colloq. Math. Soc. János Bolyai 10, North-Holland, Amsterdam, 1975, 425-513.
[00006] [EH] P. Erdős and A. Hajnal, On chromatic number of graphs and set-systems, Acta. Math. Acad. Sci. Hungar. 17 (1966), 61-99. | Zbl 0151.33701
[00007] [GG] F. Galvin and G. Gruenhage, A geometric equivalent of the continuum hypothesis, unpublished manuscript.
[00008] [J1] S. Jackson, A new proof of the strong partition relation on , Trans. Amer. Math. Soc. 320 (1990), 737-745.
[00009] [J2] S. Jackson, A computation of , to appear.
[00010] [Ku] C. Kuratowski, Sur une caractérisation des alephs, Fund. Math. 38 (1951), 14-17. | Zbl 0044.27302
[00011] [S1] W. Sierpiński, Sur quelques propositions concernant la puissance du continu, ibid., 1-13. | Zbl 0044.27301
[00012] [S2] W. Sierpiński, Hypothèse du continu, Warszawa, 1934. | Zbl 60.0035.01
[00013] [Si] R. Sikorski, A characterization of alephs, Fund. Math. 38 (1951), 18-22. | Zbl 0044.27303
[00014] [Sm1] J. Simms, Sierpiński's theorem, Simon Stevin 65 (1991), 69-163. | Zbl 0726.01013
[00015] [Sm2] J. Simms, Is weakly inaccessible?, to appear.
[00016] [To] S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261-294. | Zbl 0658.03028
[00017] [W] W. H. Woodin, Some consistency results in ZFC using AD, in: Cabal Seminar 79-81, Lecture Notes in Math. 1019, Springer, 1983, 172-198.