On partitions of lines and space
Erdös, Paul ; Jackson, Steve ; Mauldin, R.
Fundamenta Mathematicae, Tome 144 (1994), p. 101-119 / Harvested from The Polish Digital Mathematics Library

We consider a set, L, of lines in n and a partition of L into some number of sets: L=L1...Lp. We seek a corresponding partition n=S1...Sp such that each line l in Li meets the set Si in a set whose cardinality has some fixed bound, ωτ. We determine equivalences between the bounds on the size of the continuum, 2ωωθ, and some relationships between p, ωτ and ωθ.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:212037
@article{bwmeta1.element.bwnjournal-article-fmv145i2p101bwm,
     author = {Paul Erd\"os and Steve Jackson and R. Mauldin},
     title = {On partitions of lines and space},
     journal = {Fundamenta Mathematicae},
     volume = {144},
     year = {1994},
     pages = {101-119},
     zbl = {0809.04004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv145i2p101bwm}
}
Erdös, Paul; Jackson, Steve; Mauldin, R. On partitions of lines and space. Fundamenta Mathematicae, Tome 144 (1994) pp. 101-119. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv145i2p101bwm/

[00000] [B] F. Bagemihl, A proposition of elementary plane geometry that implies the continuum hypothesis, Z. Math. Logik Grundlag. Math. 7 (1961), 77-79. | Zbl 0121.01604

[00001] [BH] G. Bergman and E. Hrushovski, Identities of cofinal sublattices, Order 2 (1985), 173-191. | Zbl 0579.06010

[00002] [D1] R. Davies, On a problem of Erdős concerning decompositions of the plane, Proc. Cambridge Philos. Soc. 59 (1963), 33-36. | Zbl 0121.25702

[00003] [D2] R. Davies, On a denumerable partition problem of Erdős, ibid., 501-502. | Zbl 0121.01602

[00004] [Er] P. Erdős, Some remarks on set theory. IV, Michigan Math. J. 2 (1953-54), 169-173.

[00005] [EGH] P. Erdős, F. Galvin and A. Hajnal, On set-systems having large chromatic number and not containing prescribed subsystems, in: Infinite and Finite Sets (Colloq., Keszthely; dedicated to P. Erdős on his 60th birthday, 1973), Colloq. Math. Soc. János Bolyai 10, North-Holland, Amsterdam, 1975, 425-513.

[00006] [EH] P. Erdős and A. Hajnal, On chromatic number of graphs and set-systems, Acta. Math. Acad. Sci. Hungar. 17 (1966), 61-99. | Zbl 0151.33701

[00007] [GG] F. Galvin and G. Gruenhage, A geometric equivalent of the continuum hypothesis, unpublished manuscript.

[00008] [J1] S. Jackson, A new proof of the strong partition relation on ω1, Trans. Amer. Math. Soc. 320 (1990), 737-745.

[00009] [J2] S. Jackson, A computation of δ51, to appear.

[00010] [Ku] C. Kuratowski, Sur une caractérisation des alephs, Fund. Math. 38 (1951), 14-17. | Zbl 0044.27302

[00011] [S1] W. Sierpiński, Sur quelques propositions concernant la puissance du continu, ibid., 1-13. | Zbl 0044.27301

[00012] [S2] W. Sierpiński, Hypothèse du continu, Warszawa, 1934. | Zbl 60.0035.01

[00013] [Si] R. Sikorski, A characterization of alephs, Fund. Math. 38 (1951), 18-22. | Zbl 0044.27303

[00014] [Sm1] J. Simms, Sierpiński's theorem, Simon Stevin 65 (1991), 69-163. | Zbl 0726.01013

[00015] [Sm2] J. Simms, Is 2ω weakly inaccessible?, to appear.

[00016] [To] S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261-294. | Zbl 0658.03028

[00017] [W] W. H. Woodin, Some consistency results in ZFC using AD, in: Cabal Seminar 79-81, Lecture Notes in Math. 1019, Springer, 1983, 172-198.