Knot manifolds with isomorphic spines
Cavicchioli, Alberto ; Hegenbarth, Friedrich
Fundamenta Mathematicae, Tome 144 (1994), p. 79-89 / Harvested from The Polish Digital Mathematics Library

We study the relation between the concept of spine and the representation of orientable bordered 3-manifolds by Heegaard diagrams. As a consequence, we show that composing invertible non-amphicheiral knots yields examples of topologically different knot manifolds with isomorphic spines. These results are related to some questions listed in [9], [11] and recover the main theorem of [10] as a corollary. Finally, an application concerning knot manifolds of composite knots with h prime factors completes the paper.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:212035
@article{bwmeta1.element.bwnjournal-article-fmv145i1p79bwm,
     author = {Alberto Cavicchioli and Friedrich Hegenbarth},
     title = {Knot manifolds with isomorphic spines},
     journal = {Fundamenta Mathematicae},
     volume = {144},
     year = {1994},
     pages = {79-89},
     zbl = {0832.57007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv145i1p79bwm}
}
Cavicchioli, Alberto; Hegenbarth, Friedrich. Knot manifolds with isomorphic spines. Fundamenta Mathematicae, Tome 144 (1994) pp. 79-89. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv145i1p79bwm/

[00000] [1] G. Burde and H. Zieschang, Knots, Walter de Gruyter, Berlin, 1985.

[00001] [2] A. Cavicchioli, Imbeddings of polyhedra in 3-manifolds, Ann. Mat. Pura Appl. 162 (1992), 157-177. | Zbl 0777.57003

[00002] [3] R. Craggs, Free Heegaard diagrams and extended Nielsen transformations, I, Michigan Math. J. 26 (1979), 161-186; II, Illinois J. Math. 23 (1979), 101-127. | Zbl 0441.57011

[00003] [4] M. Culler, C. Mc A. Gordon, J. Luecke and P. Shalen, Dehn surgery on knots, Bull. Amer. Math. Soc. 13 (1985), 43-45; Ann. of Math. 125 (1987), 237-300. | Zbl 0571.57008

[00004] [5] C. D. Feustel and W. Whitten, Groups and complement of knots, Canad. J. Math. 30 (1978), 1284-1295. | Zbl 0373.55003

[00005] [6] C. Mc A. Gordon and J. Luecke, Knots are determined by their complements, Bull. Amer. Math. Soc. 20 (1989), 83-87; J. Amer. Math. Soc. 2 (1989), 371-415. | Zbl 0672.57009

[00006] [7] J. Hempel, 3-manifolds, Princeton Univ. Press, Princeton, N.J., 1976.

[00007] [8] L. H. Kauffman, On knots, Ann. of Math. Stud. 115, Princeton Univ. Press, Princeton, N.J., 1987. | Zbl 0627.57002

[00008] [9] R. Kirby, Problems in low dimensional manifold theory, in: Proc. Sympos. Pure Math. 32, Amer. Math. Soc., Providence, R.I., 1978, 273-312.

[00009] [10] W. J. R. Mitchell, J. Przytycki and D. Repovš, On spines of knot spaces, Bull. Polish Acad. Sci. 37 (1989), 563-565. | Zbl 0758.57006

[00010] [11] D. Repovš, Regular neighbourhoods of homotopically PL embedded compacta in 3-manifolds, Suppl. Rend. Circ. Mat. Palermo 18 (1988), 415-422. | Zbl 0649.57020

[00011] [12] D. Rolfsen, Knots and Links, Math. Lecture Ser. 7, Publish or Perish, Berkeley, 1976.

[00012] [13] T. B. Rushing, Topological Embeddings, Academic Press, New York, 1973.

[00013] [14] J. Simon, On the problems of determining knots by their complements and knot complements by their groups, Proc. Amer. Math. Soc. 57 (1976), 140-142. | Zbl 0329.55002

[00014] [15] J. Simon, How many knots have the same group?, ibid. 80 (1980), 162-166. | Zbl 0447.57004

[00015] [16] J. Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 35 (1933), 88-111. | Zbl 0006.18501

[00016] [17] J. Stillwell, Classical Topology and Combinatorial Group Theory, Springer, New York, 1980.

[00017] [18] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87 (1968), 56-88. | Zbl 0157.30603

[00018] [19] W. Whitten, Rigidity among prime-knot complements, Bull. Amer. Math. Soc. 14 (1986), 299-300. | Zbl 0602.57003

[00019] [20] W. Whitten, Knot complements and groups, Topology 26 (1987), 41-44. | Zbl 0607.57004

[00020] [21] P. Wright, Group presentations and formal deformations, Trans. Amer. Math. Soc. 208 (1975), 161-169. | Zbl 0318.57010

[00021] [22] E. C. Zeeman, Seminar on Combinatorial Topology, mimeographed notes, Inst. des Hautes Études Sci., Paris, 1963.