We prove that if A is a basin of immediate attraction to a periodic attracting or parabolic point for a rational map f on the Riemann sphere, then the periodic points in the boundary of A are dense in this boundary. To prove this in the non-simply connected or parabolic situations we prove a more abstract, geometric coding trees version.
@article{bwmeta1.element.bwnjournal-article-fmv145i1p65bwm, author = {Feliks Przytycki and Anna Zdunik}, title = {Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees technique}, journal = {Fundamenta Mathematicae}, volume = {144}, year = {1994}, pages = {65-77}, zbl = {0817.58033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv145i1p65bwm} }
Przytycki, Feliks; Zdunik, Anna. Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees technique. Fundamenta Mathematicae, Tome 144 (1994) pp. 65-77. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv145i1p65bwm/
[00000] [D] A. Douady, informal talk at the Durham Symposium, 1988.
[00001] [Du] P. L. Duren, Theory of Spaces, Academic Press, New York, 1970.
[00002] [EL] A. È. Eremenko and G. M. Levin, On periodic points of polynomials, Ukrain. Mat. Zh. 41 (1989), 1467-1471 (in Russian). | Zbl 0686.30019
[00003] [F] P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 48 (1920), 33-94.
[00004] [K] A. Katok, Lyapunov exponents, entropy and periodic points for diffeomorphisms, Publ. Math. IHES 51 (1980), 137-173. | Zbl 0445.58015
[00005] [LP] G. Levin and F. Przytycki, External rays to periodic points, preprint 24 (1992/93), the Hebrew University of Jerusalem. | Zbl 0854.30020
[00006] [Pe] C. L. Petersen, On the Pommerenke-Levin-Yoccoz inequality, Ergodic Theory Dynamical Systems 13 (1993), 785-806. | Zbl 0802.30022
[00007] [Po] Ch. Pommerenke, On conformal mapping and iteration of rational functions, Complex Variables 5 (1986), 117-126.
[00008] [P1] F. Przytycki, Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map, Invent. Math. 80 (1985), 161-179. | Zbl 0569.58024
[00009] [P2] F. Przytycki, Riemann map and holomorphic dynamics, ibid. 85 (1986), 439-455. | Zbl 0616.58029
[00010] [P3] F. Przytycki, On invariant measures for iterations of holomorphic maps, in: Problems in Holomorphic Dynamics, preprint IMS 1992/7, SUNY at Stony Brook.
[00011] [P4] F. Przytycki, Accessability of typical points for invariant measures of positive Lyapunov exponents for iterations of holomorphic maps, Fund. Math., to appear.
[00012] [PS] F. Przytycki and J. Skrzypczak, Convergence and pre-images of limit points for coding trees for iterations of holomorphic maps, Math. Ann. 290 (1991), 425-440. | Zbl 0704.30035
[00013] [PUZ] F. Przytycki, M. Urbański and A. Zdunik, Harmonic, Gibbs and Hausdorff measures for holomorphic maps, Part 1: Ann. of Math. 130 (1989), 1-40; Part 2: Studia Math. 97 (1991), 189-225. | Zbl 0703.58036
[00014] [Ro] V. A. Rokhlin, Lectures on the entropy theory of transformations with invariant measures, Uspekhi Mat. Nauk 22 (5) (1967), 3-56 (in Russian); English transl.: Russian Math. Surveys 22 (5) (1967), 1-52.
[00015] [R] D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Math. 9 (1978), 83-87. | Zbl 0432.58013