For every countable non-limit ordinal α we construct an α-dimensional Cantor ind-manifold, i.e., a compact metrizable space such that , and no closed subset L of with ind L less than the predecessor of α is a partition in . An α-dimensional Cantor Ind-manifold can be constructed similarly.
@article{bwmeta1.element.bwnjournal-article-fmv145i1p39bwm, author = {Wojciech Olszewski}, title = {Cantor manifolds in the theory of transfinite dimension}, journal = {Fundamenta Mathematicae}, volume = {144}, year = {1994}, pages = {39-64}, zbl = {0813.54025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv145i1p39bwm} }
Olszewski, Wojciech. Cantor manifolds in the theory of transfinite dimension. Fundamenta Mathematicae, Tome 144 (1994) pp. 39-64. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv145i1p39bwm/
[00000] [1] V. A. Chatyrko, Counterparts of Cantor manifolds for transfinite dimensions, Mat. Zametki 42 (1987), 115-119 (in Russian). | Zbl 0642.54028
[00001] [2] R. Engelking, Dimension Theory, PWN, Warszawa, 1978.
[00002] [3] R. Engelking, Transfinite dimension, in: Surveys in General Topology, G. M. Reed (ed.), Academic Press, 1980, 131-161.
[00003] [4] R. Engelking, General Topology, Heldermann, Berlin, 1989.
[00004] [5] D. W. Henderson, A lower bound for transfinite dimension, Fund. Math. 63 (1968), 167-173. | Zbl 0167.51301
[00005] [6] W. Hurewicz, Ueber unendlich-dimensionale Punktmengen, Proc. Akad. Amsterdam 31 (1928), 916-922. | Zbl 54.0620.05
[00006] [7] M. Landau, Strong transfinite ordinal dimension, Bull. Amer. Math. Soc. 21 (1969), 591-596. | Zbl 0175.19903
[00007] [8] B. T. Levšenko [B. T. Levshenko], Spaces of transfinite dimensionality, Mat. Sb. 67 (1965), 255-266 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 72 (1968), 135-148.
[00008] [9] L. A. Luxemburg, On compact spaces with non-coinciding transfinite dimensions, Dokl. Akad. Nauk SSSR 212 (1973), 1297-1300 (in Russian); English transl.: Soviet Math. Dokl. 14 (1973), 1593-1597.
[00009] [10] W. Olszewski, Universal spaces in the theory of transfinite dimension, I, Fund. Math. 144 (1994), 243-258. | Zbl 0812.54041
[00010] [11] A. R. Pears, A note on transfinite dimension, ibid. 71 (1971), 215-221.
[00011] [12] Yu. M. Smirnov, On universal spaces for certain classes of infinite dimensional spaces, Izv. Akad. Nauk SSSR Ser. Mat. 23 (1959), 185-196 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 21 (1962), 21-33.
[00012] [13] G. H. Toulmin, Shuffling ordinals and transfinite dimension, Proc. London Math. Soc. 4 (1954), 177-195. | Zbl 0055.41406