We show that a set of reals is undetermined in Galvin's point-open game iff it is uncountable and has property C", which answers a question of Gruenhage.
@article{bwmeta1.element.bwnjournal-article-fmv144i3p279bwm, author = {Janusz Pawlikowski}, title = {Undetermined sets of point-open games}, journal = {Fundamenta Mathematicae}, volume = {144}, year = {1994}, pages = {279-285}, zbl = {0853.54033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv144i3p279bwm} }
Pawlikowski, Janusz. Undetermined sets of point-open games. Fundamenta Mathematicae, Tome 144 (1994) pp. 279-285. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv144i3p279bwm/
[00000] [AR] A. Andryszczak and I. Recław, A note on strong measure zero sets, to appear.
[00001] [FM] D. H. Fremlin and A. Miller, On some properties of Hurewicz, Menger, and Rothberger, Fund. Math. 129 (1988), 17-33. | Zbl 0665.54026
[00002] [G] F. Galvin, Indeterminacy of point-open games, Bull. Acad. Polon. Sci. 26 (1978), 445-449. | Zbl 0392.90101
[00003] [GT] F. Galvin and R. Telgársky, Stationary strategies in topological games, Topology Appl. 22 (1986), 51-69. | Zbl 0581.90108
[00004] [K] K. Kuratowski, Topology, Vol. 1, Academic Press, 1966.
[00005] [L] R. Laver, On the consistency of Borel's conjecture, Acta Math. 137 (1976), 151-169. | Zbl 0357.28003
[00006] [M] A. W. Miller, Special subsets of the real line, in: Handbook of Set-Theoretical Topology, K. Kunen and J. E. Vaughan (eds.), Elsevier, 1984, 203-233.
[00007] [P] J. Pawlikowski, Property C", strongly meager sets and subsets of the plane, preprint. | Zbl 0906.04001
[00008] [R] I. Recław, Every Lusin set is undetermined in the point-open game, Fund. Math. 144 (1994), 43-54. | Zbl 0809.04002
[00009] [T] S. Todorčević, On the Lindelöf property of Aronszajn trees, in: General Topology and its Relation to Analysis and Algebra VI, Z. Frolí k (ed.), Heldermann-Verlag, 1988, 577-588.