Undetermined sets of point-open games
Pawlikowski, Janusz
Fundamenta Mathematicae, Tome 144 (1994), p. 279-285 / Harvested from The Polish Digital Mathematics Library

We show that a set of reals is undetermined in Galvin's point-open game iff it is uncountable and has property C", which answers a question of Gruenhage.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:212029
@article{bwmeta1.element.bwnjournal-article-fmv144i3p279bwm,
     author = {Janusz Pawlikowski},
     title = {Undetermined sets of point-open games},
     journal = {Fundamenta Mathematicae},
     volume = {144},
     year = {1994},
     pages = {279-285},
     zbl = {0853.54033},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv144i3p279bwm}
}
Pawlikowski, Janusz. Undetermined sets of point-open games. Fundamenta Mathematicae, Tome 144 (1994) pp. 279-285. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv144i3p279bwm/

[00000] [AR] A. Andryszczak and I. Recław, A note on strong measure zero sets, to appear.

[00001] [FM] D. H. Fremlin and A. Miller, On some properties of Hurewicz, Menger, and Rothberger, Fund. Math. 129 (1988), 17-33. | Zbl 0665.54026

[00002] [G] F. Galvin, Indeterminacy of point-open games, Bull. Acad. Polon. Sci. 26 (1978), 445-449. | Zbl 0392.90101

[00003] [GT] F. Galvin and R. Telgársky, Stationary strategies in topological games, Topology Appl. 22 (1986), 51-69. | Zbl 0581.90108

[00004] [K] K. Kuratowski, Topology, Vol. 1, Academic Press, 1966.

[00005] [L] R. Laver, On the consistency of Borel's conjecture, Acta Math. 137 (1976), 151-169. | Zbl 0357.28003

[00006] [M] A. W. Miller, Special subsets of the real line, in: Handbook of Set-Theoretical Topology, K. Kunen and J. E. Vaughan (eds.), Elsevier, 1984, 203-233.

[00007] [P] J. Pawlikowski, Property C", strongly meager sets and subsets of the plane, preprint. | Zbl 0906.04001

[00008] [R] I. Recław, Every Lusin set is undetermined in the point-open game, Fund. Math. 144 (1994), 43-54. | Zbl 0809.04002

[00009] [T] S. Todorčević, On the Lindelöf property of Aronszajn trees, in: General Topology and its Relation to Analysis and Algebra VI, Z. Frolí k (ed.), Heldermann-Verlag, 1988, 577-588.