Universal spaces in the theory of transfinite dimension, I
Olszewski, Wojciech
Fundamenta Mathematicae, Tome 144 (1994), p. 243-258 / Harvested from The Polish Digital Mathematics Library

R. Pol has shown that for every countable ordinal α, there exists a universal space for separable metrizable spaces X with ind X = α . We prove that for every countable limit ordinal λ, there is no universal space for separable metrizable spaces X with Ind X = λ. This implies that there is no universal space for compact metrizable spaces X with Ind X = λ. We also prove that there is no universal space for compact metrizable spaces X with ind X = λ.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:212027
@article{bwmeta1.element.bwnjournal-article-fmv144i3p243bwm,
     author = {Wojciech Olszewski},
     title = {Universal spaces in the theory of transfinite dimension, I},
     journal = {Fundamenta Mathematicae},
     volume = {144},
     year = {1994},
     pages = {243-258},
     zbl = {0812.54041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv144i3p243bwm}
}
Olszewski, Wojciech. Universal spaces in the theory of transfinite dimension, I. Fundamenta Mathematicae, Tome 144 (1994) pp. 243-258. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv144i3p243bwm/

[00000] [1] R. Engelking, Dimension Theory, PWN, Warszawa, 1978.

[00001] [2] R. Engelking, Transfinite dimension, in: Surveys in General Topology, G. M. Reed (ed.), Academic Press, 1980, 131-161.

[00002] [3] R. Engelking, General Topology, Heldermann, Berlin, 1989.

[00003] [4] W. Hurewicz, Ueber unendlich-dimensionale Punktmengen, Proc. Akad. Amsterdam 31 (1928), 167-173.

[00004] [5] M. Landau, Strong transfinite ordinal dimension, Bull. Amer. Math. Soc. 21 (1969), 591-596. | Zbl 0175.19903

[00005] [6] B. T. Levšenko [B. T. Levshenko], Spaces of transfinite dimensionality, Mat. Sb. 67 (1965), 255-266 (in Russian); English transl.: Amer. Math. Soc. Transl. Ser. 2 73 (1968), 135-148.

[00006] [7] L. A. Luxemburg, On infinite-dimensional spaces with transfinite dimension, Dokl. Akad. Nauk SSSR 199 (1971), 1243-1246 (in Russian); English transl.: Soviet Math. Dokl. 12 (1971), 1272-1276. | Zbl 0235.54036

[00007] [8] L. A. Luxemburg, On transfinite inductive dimensions, Dokl. Akad. Nauk SSSR 209 (1973), 295-298 (in Russian); English transl.: Soviet Math. Dokl. 14 (1973), 388-393. | Zbl 0283.54019

[00008] [9] L. A. Luxemburg, On compact spaces with non-coinciding transfinite dimensions, Dokl. Akad. Nauk SSSR 212 (1973), 1297-1300 (in Russian); English transl.: Soviet Math. Dokl. 14 (1973), 1593-1597.

[00009] [10] L. A. Luxemburg, On compactifications of metric spaces with transfinite dimensions, Pacific J. Math. 101 (1982), 399-450. | Zbl 0451.54030

[00010] [11] L. A. Luxemburg, On universal infinite-dimensional spaces, Fund. Math. 122 (1984), 129-147. | Zbl 0571.54029

[00011] [12] A. R. Pears, A note on transfinite dimension, ibid. 71 (1971), 215-221.

[00012] [13] R. Pol, On classification of weakly infinite-dimensional compacta, ibid. 116 (1983), 169-188. | Zbl 0571.54030

[00013] [14] R. Pol, Countable-dimensional universal sets, Trans. Amer. Math. Soc. 297 (1986), 255-268. | Zbl 0636.54032

[00014] [15] R. Pol, Questions in dimension theory, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, 1990, 279-291.

[00015] [16] Yu. M. Smirnov, On universal spaces for certain classes of infinite dimensional spaces, Izv. Akad. Nauk SSSR Ser. Mat. 23 (1959), 185-196 (in Russian); English transl.: Amer. Math. Soc. Transl. Ser. 2 21 (1962), 21-33.

[00016] [17] G. H. Toulmin, Shuffling ordinals and transfinite dimension, Proc. London Math. Soc. 4 (1954), 177-195. | Zbl 0055.41406