On strong liftings for projective limits
Macheras, N. ; Strauss, W.
Fundamenta Mathematicae, Tome 144 (1994), p. 209-229 / Harvested from The Polish Digital Mathematics Library

We discuss the permanence of strong liftings under the formation of projective limits. The results are based on an appropriate consistency condition of the liftings with the projective system called "self-consistency", which is fulfilled in many situations. In addition, we study the relationship of self-consistency and completion regularity as well as projective limits of lifting topologies.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:212025
@article{bwmeta1.element.bwnjournal-article-fmv144i3p209bwm,
     author = {N. Macheras and W. Strauss},
     title = {On strong liftings for projective limits},
     journal = {Fundamenta Mathematicae},
     volume = {144},
     year = {1994},
     pages = {209-229},
     zbl = {0812.28002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv144i3p209bwm}
}
Macheras, N.; Strauss, W. On strong liftings for projective limits. Fundamenta Mathematicae, Tome 144 (1994) pp. 209-229. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv144i3p209bwm/

[00000] [1] A. G. A. G. Babiker, G. Heller and W. Strauss, On strong lifting compactness, with applications to topological vector spaces, J. Austral. Math. Soc. Ser. A 41 (1986), 211-223. | Zbl 0611.28003

[00001] [2] A. G. A. G. Babiker and W. Strauss, Almost strong liftings and τ-additivity, in: Measure Theory, Proc. Oberwolfach, 1979, D. Kölzow (ed.), Lecture Notes in Math. 794, Springer, 1980, 220-227.

[00002] [3] A. Bellow, Lifting compact spaces, ibid., 233-253.

[00003] [4] S. Bochner, Harmonic Analysis and the Theory of Probability, Univ. of California Press, Berkeley, 1955. | Zbl 0068.11702

[00004] [5] J. R. Choksi, Inverse limits of measure spaces, Proc. London Math. Soc. (3) 8 (1958), 321-342. | Zbl 0085.04003

[00005] [6] J. R. Choksi, Recent developments arising out of Kakutani's work on completion regularity of measures, in: Contemp. Math. 26, Amer. Math. Soc., 1984, 8-93. | Zbl 0538.28008

[00006] [7] J. Dixmier, Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math. 2 (1951), 151-182.

[00007] [8] J. Dugundji, Topology, Allyn and Bacon, Boston, 1970.

[00008] [9] D. H. Fremlin, Products of Radon measures: A counter-example, Canad. Math. Bull. 19 (1976), 285-289. | Zbl 0353.28005

[00009] [10] D. H. Fremlin, Losert's example, Note of 18/9/79, University of Essex, Mathematics Department.

[00010] [11] S. Graf, Schnitte Boolescher Korrespondenzen und Ihre Dualisierungen, Dissertation, Erlangen, 1973.

[00011] [12] S. Graf, On the existence of strong liftings in second countable topological spaces, Pacific J. Math. 58 (1975), 419-426. | Zbl 0304.46025

[00012] [13] P. R. Halmos, Measure Theory, Van Nostrand Reinhold, New York, 1950.

[00013] [14] A. and C. Ionescu Tulcea, Topics in the Theory of Lifting, Springer, Berlin, 1969. | Zbl 0179.46303

[00014] [15] K. Jacobs, Measure and Integral, Academic Press, New York, 1978.

[00015] [16] S. Kakutani, Notes on infinite product measures, II, Proc. Imperial Acad. Tokyo 19 (1943), 184-188. | Zbl 0061.09701

[00016] [17] J. D. Knowles, Measures on topological spaces, Proc. London Math. Soc. 17 (1967), 139-156. | Zbl 0154.05101

[00017] [18] V. Losert, A measure space without the strong lifting property, Math. Ann. 239 (1979), 119-128. | Zbl 0402.46031

[00018] [19] N. D. Macheras, On inductive limits of measure spaces and projective limits of Lp-spaces, Mathematika 36 (1989), 116-130. | Zbl 0662.28005

[00019] [20] N. D. Macheras, On limit permanence of projectivity and injectivity, Bull. Greek Math. Soc., to appear.

[00020] [21] N. D. Macheras and W. Strauss, On various strong lifting properties for topological measure spaces, Rend. Circ. Mat. Palermo (2) Suppl. 28 (1992), 149-162. | Zbl 0761.28005

[00021] [22] N. D. Macheras and W. Strauss, On products of almost strong liftings, J. Austral. Math. Soc., to appear. | Zbl 0879.28008

[00022] [23] D. Maharam, On a theorem of von Neumann, Proc. Amer. Math. Soc. 9 (1958), 987-994.

[00023] [24] W. Moran, The additivity of measures on completely regular spaces, J. London Math. Soc. 43 (1968), 633-639. | Zbl 0159.07802

[00024] [25] K. Musiał, Projective limits of perfect measure spaces, Fund. Math. 110 (1980), 163-189. | Zbl 0393.28010

[00025] [26] J. von Neumann, Algebraische Repräsentanten der Funktionen bis auf eine Menge von Masse Null, J. Reine Angew. Math. 165 (1931), 109-115. | Zbl 0003.10602

[00026] [27] S. Okada and Y. Okazaki, Projective limit of infinite Radon measures, J. Austral. Math. Soc. Ser. A 25 (1978), 328-331. | Zbl 0427.28012

[00027] [28] J. C. Oxtoby, Measure and Category, Springer, Berlin, 1970.

[00028] [29] M. M. Rao, Projective limits of probability spaces, J. Multivariate Anal. 1 (1971), 28-57 . | Zbl 0274.60006

[00029] [30] M. Talagrand, Closed convex hull of set of measurable functions, Riemann-measurable functions and measurability of translations, Ann. Inst. Fourier (Grenoble) 32 (1) (1982), 39-69. | Zbl 0452.28004

[00030] [31] T. Traynor, An elementary proof of the lifting theorem, Pacific J. Math. 53 (1974), 267-272. | Zbl 0258.46043