We discuss the permanence of strong liftings under the formation of projective limits. The results are based on an appropriate consistency condition of the liftings with the projective system called "self-consistency", which is fulfilled in many situations. In addition, we study the relationship of self-consistency and completion regularity as well as projective limits of lifting topologies.
@article{bwmeta1.element.bwnjournal-article-fmv144i3p209bwm, author = {N. Macheras and W. Strauss}, title = {On strong liftings for projective limits}, journal = {Fundamenta Mathematicae}, volume = {144}, year = {1994}, pages = {209-229}, zbl = {0812.28002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv144i3p209bwm} }
Macheras, N.; Strauss, W. On strong liftings for projective limits. Fundamenta Mathematicae, Tome 144 (1994) pp. 209-229. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv144i3p209bwm/
[00000] [1] A. G. A. G. Babiker, G. Heller and W. Strauss, On strong lifting compactness, with applications to topological vector spaces, J. Austral. Math. Soc. Ser. A 41 (1986), 211-223. | Zbl 0611.28003
[00001] [2] A. G. A. G. Babiker and W. Strauss, Almost strong liftings and τ-additivity, in: Measure Theory, Proc. Oberwolfach, 1979, D. Kölzow (ed.), Lecture Notes in Math. 794, Springer, 1980, 220-227.
[00002] [3] A. Bellow, Lifting compact spaces, ibid., 233-253.
[00003] [4] S. Bochner, Harmonic Analysis and the Theory of Probability, Univ. of California Press, Berkeley, 1955. | Zbl 0068.11702
[00004] [5] J. R. Choksi, Inverse limits of measure spaces, Proc. London Math. Soc. (3) 8 (1958), 321-342. | Zbl 0085.04003
[00005] [6] J. R. Choksi, Recent developments arising out of Kakutani's work on completion regularity of measures, in: Contemp. Math. 26, Amer. Math. Soc., 1984, 8-93. | Zbl 0538.28008
[00006] [7] J. Dixmier, Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math. 2 (1951), 151-182.
[00007] [8] J. Dugundji, Topology, Allyn and Bacon, Boston, 1970.
[00008] [9] D. H. Fremlin, Products of Radon measures: A counter-example, Canad. Math. Bull. 19 (1976), 285-289. | Zbl 0353.28005
[00009] [10] D. H. Fremlin, Losert's example, Note of 18/9/79, University of Essex, Mathematics Department.
[00010] [11] S. Graf, Schnitte Boolescher Korrespondenzen und Ihre Dualisierungen, Dissertation, Erlangen, 1973.
[00011] [12] S. Graf, On the existence of strong liftings in second countable topological spaces, Pacific J. Math. 58 (1975), 419-426. | Zbl 0304.46025
[00012] [13] P. R. Halmos, Measure Theory, Van Nostrand Reinhold, New York, 1950.
[00013] [14] A. and C. Ionescu Tulcea, Topics in the Theory of Lifting, Springer, Berlin, 1969. | Zbl 0179.46303
[00014] [15] K. Jacobs, Measure and Integral, Academic Press, New York, 1978.
[00015] [16] S. Kakutani, Notes on infinite product measures, II, Proc. Imperial Acad. Tokyo 19 (1943), 184-188. | Zbl 0061.09701
[00016] [17] J. D. Knowles, Measures on topological spaces, Proc. London Math. Soc. 17 (1967), 139-156. | Zbl 0154.05101
[00017] [18] V. Losert, A measure space without the strong lifting property, Math. Ann. 239 (1979), 119-128. | Zbl 0402.46031
[00018] [19] N. D. Macheras, On inductive limits of measure spaces and projective limits of -spaces, Mathematika 36 (1989), 116-130. | Zbl 0662.28005
[00019] [20] N. D. Macheras, On limit permanence of projectivity and injectivity, Bull. Greek Math. Soc., to appear.
[00020] [21] N. D. Macheras and W. Strauss, On various strong lifting properties for topological measure spaces, Rend. Circ. Mat. Palermo (2) Suppl. 28 (1992), 149-162. | Zbl 0761.28005
[00021] [22] N. D. Macheras and W. Strauss, On products of almost strong liftings, J. Austral. Math. Soc., to appear. | Zbl 0879.28008
[00022] [23] D. Maharam, On a theorem of von Neumann, Proc. Amer. Math. Soc. 9 (1958), 987-994.
[00023] [24] W. Moran, The additivity of measures on completely regular spaces, J. London Math. Soc. 43 (1968), 633-639. | Zbl 0159.07802
[00024] [25] K. Musiał, Projective limits of perfect measure spaces, Fund. Math. 110 (1980), 163-189. | Zbl 0393.28010
[00025] [26] J. von Neumann, Algebraische Repräsentanten der Funktionen bis auf eine Menge von Masse Null, J. Reine Angew. Math. 165 (1931), 109-115. | Zbl 0003.10602
[00026] [27] S. Okada and Y. Okazaki, Projective limit of infinite Radon measures, J. Austral. Math. Soc. Ser. A 25 (1978), 328-331. | Zbl 0427.28012
[00027] [28] J. C. Oxtoby, Measure and Category, Springer, Berlin, 1970.
[00028] [29] M. M. Rao, Projective limits of probability spaces, J. Multivariate Anal. 1 (1971), 28-57 . | Zbl 0274.60006
[00029] [30] M. Talagrand, Closed convex hull of set of measurable functions, Riemann-measurable functions and measurability of translations, Ann. Inst. Fourier (Grenoble) 32 (1) (1982), 39-69. | Zbl 0452.28004
[00030] [31] T. Traynor, An elementary proof of the lifting theorem, Pacific J. Math. 53 (1974), 267-272. | Zbl 0258.46043