Ordinal products of topological spaces
Chatyrko, Vitalij
Fundamenta Mathematicae, Tome 144 (1994), p. 95-117 / Harvested from The Polish Digital Mathematics Library

The notion of the ordinal product of a transfinite sequence of topological spaces which is an extension of the finite product operation is introduced. The dimensions of finite and infinite ordinal products are estimated. In particular, the dimensions of ordinary products of Smirnov's [S] and Henderson's [He1] compacta are calculated.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:212023
@article{bwmeta1.element.bwnjournal-article-fmv144i2p95bwm,
     author = {Vitalij Chatyrko},
     title = {Ordinal products of topological spaces},
     journal = {Fundamenta Mathematicae},
     volume = {144},
     year = {1994},
     pages = {95-117},
     zbl = {0809.54027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv144i2p95bwm}
}
Chatyrko, Vitalij. Ordinal products of topological spaces. Fundamenta Mathematicae, Tome 144 (1994) pp. 95-117. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv144i2p95bwm/

[00000] [A-Pa] P. S. Aleksandrov and B. A. Pasynkov, Introduction to Dimension Theory, Nauka, Moscow, 1973 (in Russian).

[00001] [B1] P. Borst, Classification of weakly infinite-dimensional spaces. Part I: A transfinite extension of the covering dimension, Fund. Math. 130 (1988), 1-25. | Zbl 0661.54035

[00002] [B2] P. Borst, Classification of weakly infinite-dimensional spaces. Part II: Essential mappings, ibid., 73-99. | Zbl 0661.54036

[00003] [B3] P. Borst, Some remarks concerning C-spaces, preprint.

[00004] [D] A. N. Dranishnikov, Absolute extensors in dimension n and dimension raising n-soft mappings, Uspekhi Mat. Nauk 39 (5) (1984), 55-95 (in Russian).

[00005] [E1] R. Engelking, General Topology, PWN, Warszawa 1977.

[00006] [E2] R. Engelking, Dimension Theory, PWN, Warszawa 1978.

[00007] [E3] R. Engelking, Transfinite dimension, in: Surveys in General Topology, G. M. Reed (ed.), Academic Press, New York, 1980, 131-161.

[00008] [F] V. V. Filippov, On the inductive dimension of the product of bicompacta, Dokl. Akad. Nauk SSSR 202 (1972), 1016-1019 (in Russian).

[00009] [Ha] Y. Hattori, Solution of problems concerning transfinite dimension, Questions Answers Gen. Topology 1 (1983), 128-134.

[00010] [Ha-Y] Y. Hattori and K. Yamada, Closed pre-images of C-spaces, Math. Japon. 34 (1989), 555-561. | Zbl 0694.54028

[00011] [H] F. Hausdorff, Set Theory, Chelsea, New York, 1962.

[00012] [He1] D. W. Henderson, A lower bound for transfinite dimension, Fund. Math. 63 (1968), 167-173. | Zbl 0167.51301

[00013] [He2] D. W. Henderson, D-dimension I. A new transfinite dimension, Pacific J. Math. 26 (1968), 91-107. | Zbl 0162.26904

[00014] [Hes] G. Hessenberg, Grundbegriffe der Mengenlehre, Göttingen, 1906. | Zbl 37.0067.03

[00015] [K-M] K. Kuratowski and A. Mostowski, Set Theory, PWN and North-Holland, 1976.

[00016] [Le] B. T. Levshenko, Spaces of transfinite dimensionality, Mat. Sb. 67 (1965), 255-266 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 73 (1968), 135-148. | Zbl 0193.51305

[00017] [L] L. A. Luxemburg, On compacta with non-coinciding transfinite dimensions, Dokl. Akad. Nauk SSSR 212 (1973), 1297-1300 (in Russian); English transl.: Soviet Math. Dokl. 14 (1973), 1593-1597.

[00018] [Pa1] B. A. Pasynkov, On dimension of rectangular products, Dokl. Akad. Nauk SSSR 221 (1975), 291-294 (in Russian).

[00019] [Pa2] B. A. Pasynkov, On transfinite dimension, Abstracts of Leningrad Internat. Topology Conf., 1982 (in Russian).

[00020] [P] R. Pol, On classification of weakly infinite-dimensional compacta, Fund. Math. 116 (1983), 169-188. | Zbl 0571.54030

[00021] [Po] L. Polkowski, On transfinite dimension, Colloq. Math. 50 (1985), 61-79. | Zbl 0613.54024

[00022] [S] Yu. M. Smirnov, On universal spaces for some classes of infinite-dimensional spaces, Izv. Akad. Nauk SSSR 23 (1959), 185-196 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 21 (1962), 21-34.

[00023] [T] G. H. Toulmin, Shuffling ordinals and transfinite dimension, Proc. London Math. Soc. 4 (1954), 177-195. | Zbl 0055.41406