Minimal bi-Lipschitz embedding dimension of ultrametric spaces
Luukkainen, Jouni ; Movahedi-Lankarani, Hossein
Fundamenta Mathematicae, Tome 144 (1994), p. 181-193 / Harvested from The Polish Digital Mathematics Library

We prove that an ultrametric space can be bi-Lipschitz embedded in n if its metric dimension in Assouad’s sense is smaller than n. We also characterize ultrametric spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits of certain inverse sequences of discrete spaces.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:212022
@article{bwmeta1.element.bwnjournal-article-fmv144i2p181bwm,
     author = {Jouni Luukkainen and Hossein Movahedi-Lankarani},
     title = {Minimal bi-Lipschitz embedding dimension of ultrametric spaces},
     journal = {Fundamenta Mathematicae},
     volume = {144},
     year = {1994},
     pages = {181-193},
     zbl = {0807.54025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv144i2p181bwm}
}
Luukkainen, Jouni; Movahedi-Lankarani, Hossein. Minimal bi-Lipschitz embedding dimension of ultrametric spaces. Fundamenta Mathematicae, Tome 144 (1994) pp. 181-193. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv144i2p181bwm/

[00000] [1] M. Aschbacher, P. Baldi, E. B. Baum and R. M. Wilson, Embeddings of ultrametric spaces in finite dimensional structures, SIAM J. Algebraic Discrete Methods 8 (1987), 564-577. | Zbl 0639.51018

[00001] [2] P. Assouad, Espaces métriques, plongements, facteurs, Thèse de doctorat d'État, Orsay, 1977. | Zbl 0396.46035

[00002] [3] P. Assouad, Étude d’une dimension métrique liée à la possibilité de plongements dans n, C. R. Acad. Sci. Paris Sér. A 288 (1979), 731-734. | Zbl 0409.54020

[00003] [4] P. Assouad, Plongements Lipschitziens dans n, Bull. Soc. Math. France 111 (1983), 429-448. | Zbl 0597.54015

[00004] [5] A. Ben-Artzi, A. Eden, C. Foias and B. Nicolaenko, Hölder continuity for the inverse of Ma né's projection, J. Math. Anal. Appl. 178 (1993), 22-29. | Zbl 0815.46016

[00005] [6] R. Engelking, Dimension Theory, PWN, Warszawa, and North-Holland, Amsterdam, 1978.

[00006] [7] K. Falconer, Fractal Geometry, Wiley, Chichester, 1990.

[00007] [8] J. B. Kelly, Metric inequalities and symmetric differences, in: Inequalities-II, O. Shisha (ed.), Academic Press, New York, 1970, 193-212.

[00008] [9] J. B. Kelly, Hypermetric spaces and metric transforms, in: Inequalities-III, O. Shisha (ed.), Academic Press, New York, 1972, 149-158. | Zbl 0294.52011

[00009] [10] A. Yu. Lemin, On the stability of the property of a space being isosceles, Uspekhi Mat. Nauk 39 (5) (1984), 249-250 (in Russian); English transl.: Russian Math. Surveys 39 (5) (1984), 283-284.

[00010] [11] A. Yu. Lemin, Isometric imbedding of isosceles (non-Archimedean) spaces in Euclidean spaces, Dokl. Akad. Nauk SSSR 285 (1985), 558-562 (in Russian); English transl.: Soviet Math. Dokl. 32 (1985), 740-744. | Zbl 0602.54031

[00011] [12] J. Luukkainen and P. Tukia, Quasisymmetric and Lipschitz approximation of embeddings, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), 343-367. | Zbl 0456.57005

[00012] [13] J. Luukkainen and J. Väisälä, Elements of Lipschitz topology, ibid. 3 (1977), 85-122. | Zbl 0397.57011

[00013] [14] G. Michon, Les cantors réguliers, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), 673-675. | Zbl 0582.54019

[00014] [15] H. Movahedi-Lankarani, On the inverse of Ma né's projection, Proc. Amer. Math. Soc. 116 (1992), 555-560. | Zbl 0777.54011

[00015] [16] H. Movahedi-Lankarani, An invariant of bi-Lipschitz maps, Fund. Math. 143 (1993), 1-9. | Zbl 0845.54018

[00016] [17] A. C. M. van Rooij, Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978.

[00017] [18] W. H. Schikhof, Ultrametric Calculus, Cambridge University Press, Cambridge, 1984. | Zbl 0553.26006

[00018] [19] A. F. Timan, On the isometric mapping of some ultrametric spaces into Lp-spaces, Trudy Mat. Inst. Steklov. 134 (1975), 314-326 (in Russian); English transl.: Proc. Steklov Inst. Math. 134 (1975), 357-370. | Zbl 0329.46031

[00019] [20] A. F. Timan and I. A. Vestfrid, Any separable ultrametric space can be isometrically imbedded in l2, Funktsional. Anal. i Prilozhen. 17 (1) (1983), 85-86 (in Russian); English transl.: Functional Anal. Appl. 17 (1983), 70-71. | Zbl 0522.46017

[00020] [21] J. H. Wells and L. R. Williams, Embeddings and Extensions in Analysis, Springer, Berlin, 1975. | Zbl 0324.46034