Normal numbers and subsets of N with given densities
Ki, Haseo ; Linton, Tom
Fundamenta Mathematicae, Tome 144 (1994), p. 163-179 / Harvested from The Polish Digital Mathematics Library

For X ⊆ [0,1], let DX denote the collection of subsets of ℕ whose densities lie in X. Given the exact location of X in the Borel or difference hierarchy, we exhibit the exact location of DX. For α ≥ 3, X is properly Dξ(Πα0) iff DX is properly Dξ(Π1+α0). We also show that for every nonempty set X ⊆[0,1], DX is Π30-hard. For each nonempty Π20 set X ⊆ [0,1], in particular for X = x, DX is Π30-complete. For each n ≥ 2, the collection of real numbers that are normal or simply normal to base n is Π30-complete. Moreover, D, the subsets of ℕ with rational densities, is D2(Π30)-complete.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:212021
@article{bwmeta1.element.bwnjournal-article-fmv144i2p163bwm,
     author = {Haseo Ki and Tom Linton},
     title = {Normal numbers and subsets of N with given densities},
     journal = {Fundamenta Mathematicae},
     volume = {144},
     year = {1994},
     pages = {163-179},
     zbl = {0809.04001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv144i2p163bwm}
}
Ki, Haseo; Linton, Tom. Normal numbers and subsets of N with given densities. Fundamenta Mathematicae, Tome 144 (1994) pp. 163-179. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv144i2p163bwm/

[00000] [1] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974. | Zbl 0281.10001

[00001] [2] A. Louveau and J. Saint-Raymond, Borel classes and closed games: Wadge-type and Hurewicz-type results, Trans. Amer. Math. Soc. 304 (1987), 431-467. | Zbl 0655.04001

[00002] [3] D. A. Martin, Borel determinacy, Ann. of Math. (2) 102 (1975), 363-371.

[00003] [4] D. E. Miller, The invariant Πα0 separation principle, Trans. Amer. Math. Soc. 242 (1978), 185-204.

[00004] [5] I. Niven, Irrational Numbers, The Carus Math. Monographs 11, Math. Assoc. America, Quinn and Boden, Rahway, N.J., 1956.

[00005] [6] W. Schmidt, On normal numbers, Pacific J. Math. 10 (1960), 661-672. | Zbl 0093.05401

[00006] [7] W. Wadge, Degrees of complexity of subsets of the Baire space, Notices Amer. Math. Soc. 19 (1972), A-714-A-715 (abstract 72T-E91).