We study the -theory of sequences of dual groups and give a complete classification of the -elementary classes by finding simple invariants for them. We show that nonstandard models exist.
@article{bwmeta1.element.bwnjournal-article-fmv144i2p129bwm, author = {A. Mekler and G. Schlitt}, title = {The theory of dual groups}, journal = {Fundamenta Mathematicae}, volume = {144}, year = {1994}, pages = {129-142}, zbl = {0818.03018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv144i2p129bwm} }
Mekler, A.; Schlitt, G. The theory of dual groups. Fundamenta Mathematicae, Tome 144 (1994) pp. 129-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv144i2p129bwm/
[00000] [1] J. Barwise, Back and forth through infinitary logic, in: Studies in Model Theory, MAA Stud. Math. 8, Math. Assoc. Amer., 1973, 5-34.
[00001] [2] S. Chase, Function topologies on abelian groups, Illinois J. Math. 7 (1963), 593-608. | Zbl 0171.28703
[00002] [3] K. Eda and H. Ohta, On abelian groups of integer-valued continuous functions, their ℤ-duals and ℤ-reflexivity, in: Abelian Group Theory, Proc. Third Conf. Oberwolfach, Gordon & Breach, 1987, 241-257.
[00003] [4] P. Eklof and A. Mekler, Almost Free Modules, North-Holland, 1990.
[00004] [5] P. Eklof, A. Mekler and S. Shelah, On strongly-non-reflexive groups, Israel J. Math. 59 (1987), 283-298. | Zbl 0643.20034
[00005] [6] E. Ellentuck, Categoricity regained, J. Symbolic Logic 41 (1976), 639-643. | Zbl 0344.02037
[00006] [7] G. Reid, Almost Free Abelian Groups, lecture notes, Tulane University, unpublished, 1968.
[00007] [8] G. Schlitt, Sheaves of abelian groups and the quotients A**/A, J. Algebra 158 (1993), 50-60. | Zbl 0791.20064