Goldstern–Judah–Shelah preservation theorem for countable support iterations
Repický, Miroslav
Fundamenta Mathematicae, Tome 144 (1994), p. 55-72 / Harvested from The Polish Digital Mathematics Library

[1] T. Bartoszyński, Additivity of measure implies additivity of category, Trans. Amer. Math. Soc. 281 (1984), 209-213. [2] T. Bartoszyński and H. Judah, Measure and Category, in preparation. [3] D. H. Fremlin, Cichoń’s diagram, Publ. Math. Univ. Pierre Marie Curie 66, Sém. Initiation Anal., 1983/84, Exp. 5, 13 pp. [4] M. Goldstern, Tools for your forcing construction, in: Set Theory of the Reals, Conference of Bar-Ilan University, H. Judah (ed.), Israel Math. Conf. Proc. 6, 1992, 307-362. [5] H. Judah and M. Repický, No random reals in countable support iterations, preprint. [6] H. Judah and S. Shelah, The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing), J. Symbolic Logic 55 (1990), 909-927. [7] A. W. Miller, Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981), 93-114. [8] J. Pawlikowski, Why Solovay real produces Cohen real, J. Symbolic Logic 51 (1986), 957-968. [9] J. Raisonnier and J. Stern, The strength of measurability hypotheses, Israel J. Math. 50 (1985), 337-349. [10] M. Repický, Properties of measure and category in generalized Cohen’s and Silver’s forcing, Acta Univ. Carol. - Math. Phys. 28 (1987), 101-115. [11] S. Shelah, Proper Forcing, Springer, Berlin, 1984. [12] J. Truss, Sets having caliber 1, in: Logic Colloquium 76, Stud. Logic Found. Math. 87, North-Holland, 1977, 595-612.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:212015
@article{bwmeta1.element.bwnjournal-article-fmv144i1p55bwm,
     author = {Miroslav Repick\'y},
     title = {Goldstern--Judah--Shelah preservation theorem for countable support iterations},
     journal = {Fundamenta Mathematicae},
     volume = {144},
     year = {1994},
     pages = {55-72},
     zbl = {0807.03034},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv144i1p55bwm}
}
Repický, Miroslav. Goldstern–Judah–Shelah preservation theorem for countable support iterations. Fundamenta Mathematicae, Tome 144 (1994) pp. 55-72. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv144i1p55bwm/

[00000] [1] T. Bartoszyński, Additivity of measure implies additivity of category, Trans. Amer. Math. Soc. 281 (1984), 209-213. | Zbl 0538.03042

[00001] [2] T. Bartoszyński and H. Judah, Measure and Category, in preparation. | Zbl 0787.03036

[00002] [3] D. H. Fremlin, Cichoń's diagram, Publ. Math. Univ. Pierre Marie Curie 66, Sém. Initiation Anal., 1983/84, Exp. 5, 13 pp.

[00003] [4] M. Goldstern, Tools for your forcing construction, in: Set Theory of the Reals, Conference of Bar-Ilan University, H. Judah (ed.), Israel Math. Conf. Proc. 6, 1992, 307-362.

[00004] [5] H. Judah and M. Repický, No random reals in countable support iterations, preprint. | Zbl 0838.03039

[00005] [6] H. Judah and S. Shelah, The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing), J. Symbolic Logic 55 (1990), 909-927. | Zbl 0718.03037

[00006] [7] A. W. Miller, Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981), 93-114. | Zbl 0472.03040

[00007] [8] J. Pawlikowski, Why Solovay real produces Cohen real, J. Symbolic Logic 51 (1986), 957-968. | Zbl 0622.03036

[00008] [9] J. Raisonnier and J. Stern, The strength of measurability hypotheses, Israel J. Math. 50 (1985), 337-349. | Zbl 0602.03012

[00009] [10] M. Repický, Properties of measure and category in generalized Cohen's and Silver's forcing, Acta Univ. Carol. - Math. Phys. 28 (1987), 101-115. | Zbl 0646.03047

[00010] [11] S. Shelah, Proper Forcing, Springer, Berlin, 1984.

[00011] [12] J. Truss, Sets having caliber 1, in: Logic Colloquium 76, Stud. Logic Found. Math. 87, North-Holland, 1977, 595-612.