Every Lusin set is undetermined in the point-open game
Recław, Ireneusz
Fundamenta Mathematicae, Tome 144 (1994), p. 43-54 / Harvested from The Polish Digital Mathematics Library

We show that some classes of small sets are topological versions of some combinatorial properties. We also give a characterization of spaces for which White has a winning strategy in the point-open game. We show that every Lusin set is undetermined, which solves a problem of Galvin.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:212014
@article{bwmeta1.element.bwnjournal-article-fmv144i1p43bwm,
     author = {Ireneusz Rec\l aw},
     title = {Every Lusin set is undetermined in the point-open game},
     journal = {Fundamenta Mathematicae},
     volume = {144},
     year = {1994},
     pages = {43-54},
     zbl = {0809.04002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv144i1p43bwm}
}
Recław, Ireneusz. Every Lusin set is undetermined in the point-open game. Fundamenta Mathematicae, Tome 144 (1994) pp. 43-54. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv144i1p43bwm/

[00000] [B1] T. Bartoszyński, Additivity of measure implies additivity of category, Trans. Amer. Math. Soc. 281 (1984), 209-213. | Zbl 0538.03042

[00001] [B2] T. Bartoszyński, Combinatorial aspects of measure and category, Fund. Math. 127 (1987), 225-239. | Zbl 0635.04001

[00002] [BBM] R. H. Bing, W. W. Bledsoe and R. D. Mauldin, Sets generated by rectangles, Pacific J. Math. 51 (1974), 27-36. | Zbl 0261.04001

[00003] [BRR] L. Bukovský, I. Recław and M. Repický, Spaces not distinguishing pointwise and quasinormal convergence of real functions, Topology Appl. 41 (1991), 25-40. | Zbl 0768.54025

[00004] [D] E. K. van Douwen, The integers and topology, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan (eds.), North-Holland, Amsterdam, 1984, 111-167.

[00005] [F] D. H. Fremlin, Cichoń's diagram in: Sém. Initiation à l'Analyse, G. Choquet, M. Rogalski, J. Saint-Raymond, Université Pierre et Marie Curie, Paris, 1983//84, no. 5, 13 pp.

[00006] [FJ] D. H. Fremlin and J. Jasiński, Gδ-covers and large thin sets of reals, Proc. London Math. Soc. (3) 53 (1986), 518-538. | Zbl 0591.54028

[00007] [FM] D. H. Fremlin and A. W. Miller, On some properties of Hurewicz, Menger, and Rothberger, Fund. Math. 129 (1988), 17-33. | Zbl 0665.54026

[00008] [G] F. Galvin, Indeterminacy of point-open games, Bull. Acad. Polon. Sci. 26 (1978), 445-449. | Zbl 0392.90101

[00009] [GM] F. Galvin and A. W. Miller, γ-sets and other singular sets of real numbers, Topology Appl. 17 (1984), 145-155.

[00010] [M1] A. W. Miller, Special subsets of the real line, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan (eds.), North-Holland, Amsterdam, 1984, 201-233.

[00011] [M2] A. W. Miller, Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981), 93-114; Corrections and additions, ibid. 271 (1982), 347-348.

[00012] [M3] A. W. Miller, Additivity of measure implies dominating reals, Proc. Amer. Math. Soc. 91 (1984), 111-117. | Zbl 0586.03042

[00013] [M4] A. W. Miller, The Baire category theorem and cardinals of countable cofinality, J. Symbolic Logic 47 (1982), 275-287. | Zbl 0487.03026

[00014] [M5] A. W. Miller, A characterization of the least cardinal for which Baire category theorem fails, Proc. Amer. Math. Soc. 86 (1982), 498-502. | Zbl 0506.03012

[00015] [PR] J. Pawlikowski and I. Recław, On parametrized Cichoń's diagram, in preparation. | Zbl 0847.04004

[00016] [R] I. Recław, On small sets in the sense of measure and category, Fund. Math. 133 (1989), 255-260. | Zbl 0707.28001