We give several examples of Souslin forcing notions. For instance, we show that there exists a proper analytical forcing notion without ccc and with no perfect set of incompatible elements, we give an example of a Souslin ccc partial order without the Knaster property, and an example of a totally nonhomogeneous Souslin forcing notion.
@article{bwmeta1.element.bwnjournal-article-fmv144i1p23bwm, author = {Haim Judah and Andrzej Ros\l anowski and Saharon Shelah}, title = {Examples for Souslin forcing}, journal = {Fundamenta Mathematicae}, volume = {144}, year = {1994}, pages = {23-42}, zbl = {0811.03037}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv144i1p23bwm} }
Judah, Haim; Rosłanowski, Andrzej; Shelah, Saharon. Examples for Souslin forcing. Fundamenta Mathematicae, Tome 144 (1994) pp. 23-42. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv144i1p23bwm/
[00000] [Ba] J. Baumgartner, Iterated forcing, in: Surveys in Set Theory, A. R. D. Mathias (ed.), London Math. Soc. Lecture Note Ser. 87, Cambridge Univ. Press, 1983, 1-59.
[00001] [BJ] J. Bagaria and H. Judah, Amoeba forcing, Suslin absoluteness and additivity of measure, in: Set Theory of the Continuum, H. Judah, W. Just and H. Woodin (eds.), Math. Sci. Res. Inst. Publ. 26, Springer, 1992, 155-173. | Zbl 0781.03038
[00002] [BaJ] T. Bartoszyński and H. Judah, Jumping with random reals, to appear. | Zbl 0711.03021
[00003] [Je] T. Jech, Set Theory, Academic Press, New York, 1978.
[00004] [Je1] T. Jech, Multiple Forcing, Cambridge Tracts in Math. 88, Cambridge Univ. Press, 1986.
[00005] [JR] H. Judah and A. Rosłanowski, On Shelah's amalgamation, in: Set Theory of the Reals, Proc. Bar-Ilan Univ., 1991, Israel Math. Conf. Proc. 6, Bar-Ilan Univ., 1993, 385-414. | Zbl 0828.03021
[00006] [JS1] H. Judah and S. Shelah, Souslin forcing, J. Symbolic Logic 53 (1988), 1188-1207.
[00007] [JS2] H. Judah and S. Shelah, Martin's axioms, measurability and equiconsistency results, ibid. 54 (1989), 78-94.
[00008] [Ra] J. Raisonnier, A mathematical proof of S. Shelah's theorem on the measure problem and related results, Israel J. Math. 48 (1984), 48-56. | Zbl 0596.03056
[00009] [Ro] J. Roitman, Adding a random or a Cohen real: topological consequences and the effect on Martin's axiom, Fund. Math. 103 (1979), 47-60. | Zbl 0442.03034
[00010] [Sh] S. Shelah, Can you take Solovay's inaccessible away?, Israel J. Math. 48 (1984), 1-47. | Zbl 0596.03055
[00011] [Sh1] S. Shelah, Vive la Différence I: nonisomorphism of ultrapowers of countable models, in: Set Theory of the Continuum, H. Judah, W. Just and H. Woodin (eds.), Math. Sci. Res. Inst. Publ. 26, Springer, 1992, 357-405. | Zbl 0789.03035
[00012] [Sh2] S. Shelah, Proper and Improper Forcing, in preparation.
[00013] [Ta] M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), 13-43. | Zbl 0435.46023
[00014] [To] S. Todorčević, Two examples of Borel partially ordered sets with the countable chain condition, Proc. Amer. Math. Soc. 112 (1991), 1125-1128. | Zbl 0727.03030