Using the monotonicity theorem of L. van den Dries for RCF-definable real functions, and a further result of that author about RCF-definable equivalence relations on ℝ, we show that the theory of order with successors is not interpretable in the theory RCF. This confirms a conjecture by J. Mycielski, P. Pudlák and A. Stern.
@article{bwmeta1.element.bwnjournal-article-fmv143i3p281bwm, author = {S. \'Swierczkowski}, title = {Order with successors is not interpr\'etable in RCF}, journal = {Fundamenta Mathematicae}, volume = {142}, year = {1993}, pages = {281-285}, zbl = {0794.03018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv143i3p281bwm} }
Świerczkowski, S. Order with successors is not interprétable in RCF. Fundamenta Mathematicae, Tome 142 (1993) pp. 281-285. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv143i3p281bwm/
[00000] [1] L. van den Dries, Algebraic theories with definable Skolem functions, J. Symbolic Logic 49 (1984), 625-629. | Zbl 0596.03032
[00001] [2] L. van den Dries, Definable sets in O-minimal structures, lecture notes at the University of Konstanz, spring 1985.
[00002] [3] L. van den Dries, Tame Topology and O-minimal Structures, book in preparation.
[00003] [4] J. Krajíček, Some theorems on the lattice of local interpretability types, Z. Math. Logik Grundlag. Math. 31 (1985), 449-460. | Zbl 0559.03034
[00004] [5] J. Mycielski, A lattice connected with relative interpretability of theories, J. Symbolic Logic 42 (1977), 297-305. | Zbl 0371.02026
[00005] [6] J. Mycielski, P. Pudlák and A. Stern, A lattice of chapters of mathematics, Mem. Amer. Math. Soc. 426 (1991). | Zbl 0696.03030
[00006] [7] A. Pillay and C. Steinhorn, Definable sets in ordered structures I, Trans. Amer. Math. Soc. 295 (1986), 565-592. | Zbl 0662.03023
[00007] [8] A. Stern, The lattice of local interpretability of theories, Ph.D. Thesis, University of California, Berkeley, March 1984.
[00008] [9] A. Stern and S. Świerczkowski, A class of connected theories of order, J. Symbolic Logic, to appear. | Zbl 0805.03048