Countably metacompact spaces in the constructible universe
Szeptycki, Paul
Fundamenta Mathematicae, Tome 142 (1993), p. 221-230 / Harvested from The Polish Digital Mathematics Library

We present a construction from ♢* of a first countable, regular, countably metacompact space with a closed discrete subspace that is not a Gδ. In addition some nonperfect spaces with σ-disjoint bases are constructed.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:212006
@article{bwmeta1.element.bwnjournal-article-fmv143i3p221bwm,
     author = {Paul Szeptycki},
     title = {Countably metacompact spaces in the constructible universe},
     journal = {Fundamenta Mathematicae},
     volume = {142},
     year = {1993},
     pages = {221-230},
     zbl = {0794.54026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv143i3p221bwm}
}
Szeptycki, Paul. Countably metacompact spaces in the constructible universe. Fundamenta Mathematicae, Tome 142 (1993) pp. 221-230. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv143i3p221bwm/

[00000] [B] D. K. Burke, PMEA and first countable countably metacompact spaces, Proc. Amer. Math. Soc. 92 (1984), 455-460. | Zbl 0544.54017

[00001] [C] J. Chaber, Metacompactness and the class of MOBI, Fund. Math. 91 (1976), 211-217. | Zbl 0343.54010

[00002] [D] P. Davies, Nonperfect space with point-countable bases, Proc. Amer. Math. Soc. 77 (1979), 276-278. | Zbl 0412.54021

[00003] [vD] E. K. van Douwen, The integers and topology, in: K. Kunen and J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 111-167.

[00004] [DTW] A. Dow, F. D. Tall and W. A. R. Weiss, New proofs of the consistency of the normal Moore space conjecture I, Topology Appl. 37 (1990), 33-51.

[00005] [F] W. G. Fleissner, Normal Moore spaces in the constructible universe, Proc. Amer. Math. Soc. 46 (1974), 294-298. | Zbl 0314.54028

[00006] [FR] W. G. Fleissner and M. Reed, Paralindelöf spaces and spaces with a σ-locally countable base, Topology Proc. 2 (1977), 89-110. | Zbl 0402.54016

[00007] [K] K. Kunen, Set Theory, An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980. | Zbl 0443.03021

[00008] [N1] P. Nyikos, A provisional solution to the normal Moore space problem, Proc. Amer. Math. Soc. 78 (1980), 429-435. | Zbl 0446.54030

[00009] [N2] P. Nyikos, Countably metacompact, locally countable spaces in the constructible universe, Topology Appl., to appear. | Zbl 0893.54017

[00010] [S] P. J. Szeptycki, Uncovering separation properties in the Easton model, preprint. | Zbl 0862.54019

[00011] [T1] F. D. Tall, Set-theoretic consistence results and topological theorems concerning the normal Moore space conjecture and related problems, Dissertationes Math. 148 (1977).

[00012] [T2] F. D. Tall, Covering and separation properties in the Easton model, Topology Appl. 28 (1988), 155-163.

[00013] [W] S. Watson, Separation in countably paracompact spaces, Trans. Amer. Math. Soc. 290 (1985), 831-842. | Zbl 0583.54013